Abstract:
A method and an apparatus for monitoring at least one media-specific property of a medium in automation technology with a measuring probe, wherein the at least one media-specific property is ascertained in a conductive operating mode and in a capacitive operating mode of the measuring probe. The conductive operating mode and the capacitive operating mode are operated alternately, wherein based on the measured values, which are ascertained in at least one of the two operating modes, it is checked, whether the at least one media-specific property to be monitored lies within a predetermined tolerance band, and wherein a report and/or a switching signal is generated, when the at least one media-specific property to be monitored lies outside of the predetermined tolerance band.
Abstract:
Apparatus (1) for determining and/or monitoring at least one process variable, comprising: a primary side (I) and a secondary side (II), which are galvanically isolated from one another, wherein the secondary side (II) has a sensor element sensitive for the process variable (2) and an electronics unit (9) of the secondary side and provides a measurement signal representing the process variable, and wherein the primary side (I) has an electronics unit (8) of the primary side for evaluating the measurement signal and for producing an output signal. The apparatus (1) is distinguished by features including that the electronics unit (9) of the secondary side has a modulation unit (14), which produces a modulated measurement signal by at least at times modulating at least one other piece of information onto the measurement signal representing the process variable, and that the electronics unit (9) of the secondary side transmits the modulated measurement signal via a galvanically isolated interface to the primary side (I).
Abstract:
A method for stabilizing the clock frequency of a microcontroller associated with a field device of automation technology. The field device as a function of application is exposed to different process conditions, wherein the clock frequency of the microcontroller is ascertained at at least two different temperature values, and/or at at least two different voltage values. Based on the ascertained values, the dependence of the clock frequency of the microcontroller on temperature over a predetermined temperature- and/or frequency range and/or the dependence of the clock frequency of the microcontroller on voltage over a predetermined voltage- and/or frequency range is ascertained. The ascertained values are stored, and the influence of temperature and/or voltage on the clock frequency of the microcontroller is at least approximately compensated taking into considerating the ascertained temperature dependence and/or the ascertained voltage dependence.
Abstract:
A method and an apparatus for monitoring a set fill level of a medium in a container using a fill level measuring probe that is designed to operate as a conductive fill level measuring probe in a conductive operating mode and as a capacitive fill level measuring probe in a capacitive operating mode, with a control/evaluation/output unit that is designed to alternately trigger conductive operating mode and capacitive operating mode, and with a control/evaluation/output unit that determines whether the set fill level of the medium in the container has been reached on the basis of the measured values from the two operating modes, and which generates a message when the set fill level is exceeded and/or undershot.
Abstract:
A system for determining and/or monitoring a process variable of a medium in a container, comprising a sensor module with an oscillatable unit, which is arranged in such a manner in the container that the oscillatable unit extends to a defined immersion depth in the medium, or that the oscillatable unit is placed at the height of the predetermined fill level, a tubular extension and/or a temperature reduction unit of a defined length, a contacting module and an electronics module, composed of an exciter/receiving unit, which excites the oscillatable unit to execute oscillations and receives the oscillations of the oscillatable unit. Two electrical coupling paths are associated with the electronics module, and a control/evaluation unit, which based on at least one oscillation variable of the oscillations or based on a change of an oscillation variable of the oscillations, provides information concerning the process variable or the reaching of the predetermined fill level. The sensor module and the electronics module are either electrically connected directly with one another, wherein one of the two electrical coupling paths is activated, or wherein the sensor module and the electronics module are indirectly electrically connected with one another via the contacting module, and wherein both coupling paths are activated.
Abstract:
An apparatus for synchronizing the clock frequencies of a first electronics unit arranged on the primary side, and a second electronics unit arranged on the secondary side. Associated with the first electronics unit is a clock signal producer, which produces a clock signal having a reference clock frequency, wherein a transmission unit is provided between the first electronics unit and the second electronics unit. A first control unit is provided, which operates the transmission unit with a clock frequency, which amounts to a fraction of the reference clock frequency of the first electronics unit, wherein a second control unit is provided, which couples the clock frequency out to the secondary side and, based on the out-coupled clock frequency, produces for the second electronics unit a clock frequency, which is synchronous with the reference clock frequency of the first electronics unit.
Abstract:
A system for determining and/or monitoring a process variable of a medium in a container, comprising a sensor module with an oscillatable unit, which is arranged in such a manner in the container that the oscillatable unit extends to a defined immersion depth in the medium, or that the oscillatable unit is placed at the height of the predetermined fill level, a tubular extension and/or a temperature reduction unit of a defined length, a contacting module and an electronics module, composed of an exciter/receiving unit, which excites the oscillatable unit to execute oscillations and receives the oscillations of the oscillatable unit. Two electrical coupling paths are associated with the electronics module, and a control/evaluation unit, which based on at least one oscillation variable of the oscillations or based on a change of an oscillation variable of the oscillations, provides information concerning the process variable or the reaching of the predetermined fill level. The sensor module and the electronics module are either electrically connected directly with one another, wherein one of the two electrical coupling paths is activated, or wherein the sensor module and the electronics module are indirectly electrically connected with one another via the contacting module, and wherein both coupling paths are activated.
Abstract:
A method for stabilizing the clock frequency of a microcontroller associated with a field device of automation technology. The field device as a function of application is exposed to different process conditions, wherein the clock frequency of the microcontroller is ascertained at least two different temperature values, and/or at least two different voltage values. Based on the ascertained values, the dependence of the clock frequency of the microcontroller on temperature over a predetermined temperature- and/or frequency range and/or the dependence of the clock frequency of the microcontroller on voltage over a predetermined voltage- and/or frequency range is ascertained. The ascertained values are stored, and the influence of temperature and/or voltage on the clock frequency of the microcontroller is at least approximately compensated taking into considering the ascertained temperature dependence and/or the ascertained voltage dependence.
Abstract:
A method and an apparatus for monitoring a set fill level of a medium in a container using a fill level measuring probe that is designed to operate as a conductive fill level measuring probe in a conductive operating mode and as a capacitive fill level measuring probe in a capacitive operating mode, with a control/evaluation/output unit that is designed to alternately trigger conductive operating mode and capacitive operating mode, and with a control/evaluation/output unit that determines whether the set fill level of the medium in the container has been reached on the basis of the measured values from the two operating modes, and which generates a message when the set fill level is exceeded and/or undershot.
Abstract:
Apparatus (1) for determining and/or monitoring at least one process variable, comprising: a primary side (I) and a secondary side (II), which are galvanically isolated from one another, wherein the secondary side (II) has a sensor element sensitive for the process variable (2) and an electronics unit (9) of the secondary side and provides a measurement signal representing the process variable, and wherein the primary side (I) has an electronics unit (8) of the primary side for evaluating the measurement signal and for producing an output signal. The apparatus (1) is distinguished by features including that the electronics unit (9) of the secondary side has a modulation unit (14), which produces a modulated measurement signal by at least at times modulating at least one other piece of information onto the measurement signal representing the process variable, and that the electronics unit (9) of the secondary side transmits the modulated measurement signal via a galvanically isolated interface to the primary side (I).