Abstract:
A thermal energy storage apparatus includes at least one hollow tube having an internal cavity and at least one basic module placed inside the internal cavity. The at least one basic module has at least one slab, at least one pair of spacer bars, and at least one through channel adapted for the passage of a heat transfer fluid.
Abstract:
A process for the production of an optically selective coating of a receiver substrate of a suitable material for solar receiver devices particularly suitable for operating at high temperatures, more specifically for receiver tubes of linear parabolic trough, which comprises: deposition of a layer reflecting infrared radiation consisting of a high-melting metal on a heated receiver substrate of a suitable material; annealing under the same temperature and pressure conditions as the deposition of the reflecting layer; deposition on the high-melting metal of one or more layers of metal-ceramic composite materials (CERMET), wherein the metal is W and the ceramic matrix is YPSZ (“Yttria-Partially Stabilized Zirconia”); deposition on the cermet of an antireflection layer; annealing under the same temperature and pressure conditions as the depositions of the cermet and antireflection layers.
Abstract:
A process for the production of an optically selective coating of a receiver substrate of a suitable material for solar receiver devices particularly suitable for operating at high temperatures, more specifically for receiver tubes of linear parabolic trough, which comprises: deposition of a layer reflecting infrared radiation consisting of a high-melting metal on a heated receiver substrate of a suitable material; annealing under the same temperature and pressure conditions as the deposition of the reflecting layer; deposition on the high-melting metal of one or more layers of metal-ceramic composite materials (CERMET), wherein the metal is W and the ceramic matrix is YPSZ (“Yttria-Partially Stabilized Zirconia”); deposition on the cermet of an antireflection layer; annealing under the same temperature and pressure conditions as the depositions of the cermet and antireflection layers.