Abstract:
Provided are lube base stocks produced from renewable biological sources with improved low temperature properties. In one form, the lube base stock includes from 10 to 35 wt. % paraffins, 40 to 70 wt. % 1-ring naphthenes, and 0 to 40 wt. % combined 2-ring naphthenes and aromatics, and has a ratio of 1-ring naphthenes to paraffins from 1.8 to 5.0, and a Viscosity Index of from 100 to 160. The lube base stock has a 14C level ranging from 2 to 101% of the modern day 14C level in the atmosphere, and yields a CCS ratio (Cold Crank Simulator (CCS) viscosity to the predicted CCS viscosity by Walther equation) of less than or equal to 0.85 at −35° C. The base stocks are useful as in formulated lubricant compositions requiring improved low temperature properties.
Abstract:
Provided are lubricant compositions from renewable biological sources with improved properties and methods of making and using such compositions. In one form, the lubricant composition includes from 20 to 99.8 wt. % of a lube base stock produced from a renewable biological source and an effective amount of one or more lubricant additives. The lube base stock includes 10 to 35 wt. % paraffins, 40 to 70 wt. % 1-ring naphthenes, and 0 to 40 wt. % combined 2-ring naphthenes and aromatics, and has a ratio of 1-ring naphthenes to paraffins from 1.8 to 5.0, and a Viscosity Index of from 100 to 160. The lube base stock has a 14C level ranging from 2 to 101% of the modern day 14C level in the atmosphere, and yields a CCS ratio of less than or equal to 0.85 at −35° C. The lubricant compositions exhibit improved solvency and % thickening when blended with a viscosity modifier.
Abstract:
Provided are lubricant compositions from renewable biological sources with improved properties and methods of making and using such compositions. In one form, the lubricant composition includes from 20 to 99.8 wt. % of a lube base stock produced from a renewable biological source and an effective amount of one or more lubricant additives. The lube base stock includes 10 to 35 wt. % paraffins, 40 to 70 wt. % 1-ring naphthenes, and 0 to 40 wt. % combined 2-ring naphthenes and aromatics, and has a ratio of 1-ring naphthenes to paraffins from 1.8 to 5.0, and a Viscosity Index of from 100 to 160. The lube base stock has a 14C level ranging from 2 to 101% of the modern day 14C level in the atmosphere, and yields a CCS ratio of less than or equal to 0.85 at −35° C. The lubricant compositions exhibit improved solvency and % thickening when blended with a viscosity modifier.
Abstract:
Provided are lube base stocks produced from renewable biological sources with improved low temperature properties. In one form, the lube base stock includes from 10 to 35 wt. % paraffins, 40 to 70 wt. % 1-ring naphthenes, and 0 to 40 wt. % combined 2-ring naphthenes and aromatics, and has a ratio of 1-ring naphthenes to paraffins from 1.8 to 5.0, and a Viscosity Index of from 100 to 160. The lube base stock has a 14C level ranging from 2 to 101% of the modern day 14C level in the atmosphere, and yields a CCS ratio (Cold Crank Simulator (CCS) viscosity to the predicted CCS viscosity by Walther equation) of less than or equal to 0.85 at −35° C. The base stocks are useful as in formulated lubricant compositions requiring improved low temperature properties.
Abstract:
Methods to generate a model of composition for a petroleum sample can include providing a petroleum sample to a two-dimensional gas chromatograph coupled with at least one detector. The chromatograph can have first and second columns. The chromatograph can be adapted to output data for each detector representing first and second dimension retention times corresponding to the first and second columns, respectively. The data representing the first and second dimension retention times for each detector based on the petroleum sample can be obtained from the chromatograph. Molecular components of the petroleum sample can be identified based at least in part on the first and second dimension retention times for each detector. The identified molecular components of the petroleum sample can be quantified based at least in part on integrated peaks of the first and second dimension retention times for each detector to generate a model of composition of the petroleum sample.
Abstract:
Provided are processes for making saturated hydrocarbons from renewable feed sources. In an embodiment, a process for producing a lube basestock and/or a diesel fuel from a feedstock of biological origin includes: contacting the feedstock in a single reactor in the presence of hydrogen with catalyst components including a first catalyst and a second catalyst, wherein the first catalyst comprises an acidic material, a basic material, or a combination of both, and wherein the second catalyst is a hydrogenation catalyst including a hydrothermally stable binder.
Abstract:
Provided is a hydrocarbon tar. The tar has 75 wt % or more of aromatics of 10 carbons to 75 carbons based on the total weight of the tar. The aromatics exhibit 40% to 80% aromaticity. The tar has a boiling point of from 300° F. to 1350° F. There is also a fuel oil composition having the tar therein. There are also processes for making the hydrocarbon tar.
Abstract:
Provided are processes for making saturated hydrocarbons from renewable feed sources. In an embodiment, a process for producing a lube basestock and/or a diesel fuel from a feedstock of biological origin includes: contacting the feedstock in a single reactor in the presence of hydrogen with catalyst components including a first catalyst and a second catalyst, wherein the first catalyst comprises an acidic material, a basic material, or a combination of both, and wherein the second catalyst is a hydrogenation catalyst including a hydrothermally stable binder.