Abstract:
The disclosure relates to processes for upgrading heavy hydrocarbon oils such as heavy crude oils, atmospheric residuum, vacuum residuum, heavy oils from catalytic treatment, heavy cycle oils from fluid catalytic cracking, thermal tars, as oils from visbreaking, oils from oil sands, bitumen, deasphlter rock, and heavy oils derived from coal. The process utilizes a utility fluid including recycled liquid hydroprocessed product containing a significant amount of single or multi-ring aromatics. Unlike conventional fixed bed resid hydroprocessing, the process can be operated at temperatures pressures and reactor conditions that favor the desired hydrocracking reactions over aromatics hydrogenation reduce the coking tendencies of heavy hydrocarbon oils.
Abstract:
Provided is a hydrocarbon tar. The tar has 75 wt % or more of aromatics of 10 carbons to 75 carbons based on the total weight of the tar. The aromatics exhibit 40% to 80% aromaticity. The tar has a boiling point of from 300° F. to 1350° F. There is also a fuel oil composition having the tar therein. There are also processes for making the hydrocarbon tar.
Abstract:
The disclosure relates to processes for upgrading heavy hydrocarbon oils such as heavy crude oils, atmospheric residuum, vacuum residuum, heavy oils from catalytic treatment, heavy cycle oils from fluid catalytic cracking, thermal tars, as oils from visbreaking, oils from oil sands, bitumen, deasphlter rock, and heavy oils derived from coal. The process utilizes a utility fluid including recycled liquid hydroprocessed product containing a significant amount of single or multi-ring aromatics. Unlike conventional fixed bed resid hydroprocessing, the process can be operated at temperatures pressures and reactor conditions that favor the desired hydrocracking reactions over aromatics hydrogenation reduce the coking tendencies of heavy hydrocarbon oils.