Abstract:
Disclosed is a mixture comprising the compound trans-1,1,1,4,4,4-hexafluoro-2-butene and 1,1-difluoroethane (R-152a). Also disclosed are methods of using and products of using the above compositions as blowing agents, solvents, heat transfer compositions, aerosol propellant compositions, fire extinguishing and suppressant compositions.
Abstract:
Composition of special fluid comprising at least one hydrogenated mono- and/or at least one polyterpene, in a mixture with at least one special fluid for industrial applications such as the petroleum industry, in construction as sealants and paints, adhesives, the inks industry, metal working, the treatment and protection of metals, but also for domestic uses and in the agric-food and plumbing industries.
Abstract:
Provided are lubricants containing a synthetic ester, one or more additional base stocks and an additive package along with methods of making and using the same. Lubricant compositions comprise a synthetic ester that is a reaction product of at least one hindered organic polyol with one or more carboxylic acid where at least some (20%) up to 100% of the acids are branched. The lubricant compositions can provide improved oxidation stability and extended service life, as compared to a lubricant whose ester component is the reaction product of one or more hindered organic polyols and one or more carboxylic acids that are all linear, in applications that involve exposure to air, moisture, and/or high temperatures. These lubricant compositions are suited to a variety of lubricant applications, including, but not limited to air compressors, gear boxes, bearing sets, hydraulic systems, and chain drives.
Abstract:
A base oil for hydraulic oil suitably used for hydraulic systems having filters of which micropore diameter is 50 μm or less is disclosed. The disclosure also provides a hydraulic oil composition using the above base oil, especially a hydraulic oil composition suitably used for such as tractors, transmissions, and common systems thereof having the hydraulic systems. The base oil has mineral oil, and the mineral oil is defined by kinematic viscosity at 100° C.: 1.5˜6 mm2/s, pour-point: −10° C. or less, viscosity index: 100 or more, % CP: 70 or more, % CA: 2 or less, and aniline point: 106° C. or more, and the mineral base oil is treated by catalytic dewaxing process and/or contains tertiary carbon atoms at a ratio of 7.4% or more to the total carbon atoms.
Abstract:
A manual transmission fluid having a VI greater than 160 and a Brookfield viscosity at −40° C. less than 30,000 cP. It comprises: 1) a base oil (made from a waxy feed) having less than 0.06 wt % aromatics, greater than 5 wt % total molecules with cycloparaffinic functionality, and a ratio of molecules with monocycloparaffinic functionality to molecules with multicycloparaffinic functionality greater than 20; and a manual transmission fluid additive package. In another embodiment, the manual transmission fluid comprises: 1) a base oil having a high VI and a kinematic viscosity at 100° C. greater than 5.5 cSt, 2) less than 0.01 wt % pour point depressant, and 3) a manual transmission fluid additive package. This invention is also directed to a process to make the manual transmission fluid, comprising the steps of hydroisomerization dewaxing, selecting base oil fractions having a high VI, and blending the fractions with an additive package.
Abstract:
A lubricating oil (made from Group III base oil having a sequential number of carbon atoms) having a VI between 155 and 300, a RPVOT greater than 680 minutes, and a kinematic viscosity at 40° C. from 19.8 cSt to 748 cSt. A lubricating oil having a high VI and high RPVOT comprising: a) a Group III base oil with a sequential number of carbon atoms, and defined cycloparaffin composition or low traction coefficient, b) an antioxidant additive concentrate and c) no VI improver. A process comprising: a) hydroisomerization dewaxing of a waxy feed, b) fractionating the produced base oil, c) selecting a fraction having a VI greater than 150, and a high level of molecules with cycloparaffinic functionality or a low traction coefficient, and d) blending the fraction with an antioxidant additive concentrate. Also, a method of improving the oxidation stability of a lubricating oil.
Abstract:
Polymer composite roofing materials are provided which contain resin, and about 20-75 wt. % fillers and additives, in which the fillers contain at least one bulk filler for reducing the amount of resin needed to make the roofing material, and at least one aesthetically functional filler for providing the roofing material with an aesthetic appearance. The bulk filler and the aesthetically functional filler of this embodiment are non-toxic, resistant to microbial attack, and have a Mohs hardness of less than about 5.
Abstract:
The refrigerating machine oil composition of the invention is characterized by containing a mixed base oil which has a kinematic viscosity at 40° C. of 0.11 to 8 mm2/s and which is composed of a low-viscosity base oil (A) having a kinematic viscosity at 40° C. of 5 mm2/s or lower, and a high-viscosity base oil (B) having a kinematic viscosity at 40° C. of 20 to 400 mm2/s, each of the base oil (A) and (B) being composed of at least one species selected from among a mineral oil, a synthetic hydrocarbon compound, an oxygen-containing compound, and a sulfur-containing compound. The refrigerating machine oil composition exhibits enhanced energy saving performance by virtue of its low viscosity, has excellent sealing performance and load resistance, and can be employed in various refrigeration means, particularly suitably in a closed-type refrigerator.
Abstract:
A fluid for traction drives for automobiles which comprises (A) a hydrocarbon compound having two bridged rings selected from bicyclo[2.2.1]heptane ring, bicyclo[3.2.1]octane ring, bicyclo[3.3.0]octane ring and bicyclo[2.2.2]octane ring and (B) a hydrocarbon compound having at least one structure selected from quaternary carbon atom and ring structures and having a kinematic viscosity at 40° C. of 10 mm2/s or smaller, and has a viscosity at −40° C. of 40,000 Pa·s or smaller and a flash point of 140° C. or higher, is provided. This fluid exhibits a great traction coefficient at high temperatures and very small viscosity at low temperatures. A fluid for traction drives which comprises a specific bicyclo[2,2,1]heptane derivative having 14 to 17 carbon atoms and having a viscosity index of 0 or greater is also provided. This fluid exhibits improved viscosity-temperature characteristics, decreased viscosity and improved fluidity at low temperatures.
Abstract:
The present invention relates to an extra light hydrocarbon liquid derived from highly paraffinic wax. This extra light hydrocarbon liquid is suitable for use as a lubricant additive diluent oil in oil soluble additive concentrates. This extra light hydrocarbon liquid derived from highly paraffinic wax has a viscosity of between about 1.0 and 3.5 cSt at 100° C. and a Noack volatility of less than 50 weight % and comprises greater than 3 weight % molecules with cycloparaffinic functionality and less than 0.30 weight percent aromatics. The extra light hydrocarbon liquid makes an excellent lubricant additive diluent oil because it has low volatility, low viscosity, good additive solubility, and excellent solubility in lubricant base oil stocks. The present invention also relates to finished lubricants comprising the oil soluble additive concentrates made with the extra light hydrocarbon liquid and finished lubricants comprising the oil soluble additive concentrates. The present invention further relates to processes for making these lubricant additive diluent oils, oil soluble additive concentrates, and finished lubricants.