摘要:
Mechanisms, in a multi-chip data processing system, for performing a boot process for booting each of a plurality of processor chips of the multi-chip data processing system are provided. With these mechanisms, a multi-chip agnostic isolated boot phase operation is performed, in parallel, to perform an initial boot of each of the plurality of processor chips as if each of the processor chips were an only processor chip in the multi-chip data processing system. A multi-chip aware isolated boot phase operation of each of the processor chips is performed in parallel, where each of the processor chips has its own separately configured address space. In addition, a unified configuration phase operation is performed to select a master processor chip from the plurality of processor chips and configure other processor chips in the plurality of processor chips to operate as slave processor chips that are controlled by the master processor chip.
摘要:
Integrating link calibration and dynamic topology discovery in a multi-processor system establishes a first of a plurality of processors in the multi-processor system as a director of integrated link calibration and dynamic topology discovery. A plurality of high speed interconnects connects the plurality of processors with each other. The director processor directs calibration of each of the plurality of high speed interconnects via a shared hardware resource. The shared hardware resource is shared among the plurality of processors. Topology of the multi-processor system is incrementally discovered as each of the plurality of high speed interconnects is calibrated based on a result of each of the plurality of high speed interconnects being calibrated.
摘要:
Integrating link calibration and dynamic topology discovery in a multi-processor system establishes a first of a plurality of processors in the multi-processor system as a director of integrated link calibration and dynamic topology discovery. A plurality of high speed interconnects connects the plurality of processors with each other. The director processor directs calibration of each of the plurality of high speed interconnects via a shared hardware resource. The shared hardware resource is shared among the plurality of processors. Topology of the multi-processor system is incrementally discovered as each of the plurality of high speed interconnects is calibrated based on a result of each of the plurality of high speed interconnects being calibrated.
摘要:
Mechanisms, in a multi-chip data processing system, for performing a boot process for booting each of a plurality of processor chips of the multi-chip data processing system are provided. With these mechanisms, a multi-chip agnostic isolated boot phase operation is performed, in parallel, to perform an initial boot of each of the plurality of processor chips as if each of the processor chips were an only processor chip in the multi-chip data processing system. A multi-chip aware isolated boot phase operation of each of the processor chips is performed in parallel, where each of the processor chips has its own separately configured address space. In addition, a unified configuration phase operation is performed to select a master processor chip from the plurality of processor chips and configure other processor chips in the plurality of processor chips to operate as slave processor chips that are controlled by the master processor chip.
摘要:
Integrating link calibration and dynamic topology discovery in a multi-processor system establishes a first of a plurality of processors in the multi-processor system as a director of integrated link calibration and dynamic topology discovery. A plurality of high speed interconnects connects the plurality of processors with each other. The director processor directs calibration of each of the plurality of high speed interconnects via a shared hardware resource. The shared hardware resource is shared among the plurality of processors. Topology of the multi-processor system is incrementally discovered as each of the plurality of high speed interconnects is calibrated based on a result of each of the plurality of high speed interconnects being calibrated.
摘要:
Integrating link calibration and dynamic topology discovery in a multi-processor system establishes a first of a plurality of processors in the multi-processor system as a director of integrated link calibration and dynamic topology discovery. A plurality of high speed interconnects connects the plurality of processors with each other. The director processor directs calibration of each of the plurality of high speed interconnects via a shared hardware resource. The shared hardware resource is shared among the plurality of processors. Topology of the multi-processor system is incrementally discovered as each of the plurality of high speed interconnects is calibrated based on a result of each of the plurality of high speed interconnects being calibrated.
摘要:
A method, apparatus and program storage device for updating a non-volatile memory in an embedded system is provided. The invention includes detaching the non-volatile memory from all expectable non-volatile memory references, creating a temporary, volatile-memory file system for allocation of volatile memory space as needed for the non-volatile memory update process, copying all procedural code required to perform the non-volatile memory update into the volatile memory, changing the system search path definitions temporarily to point to the volatile memory, and performing the non-volatile memory update.
摘要:
The present invention relates to boot code processing of a computer system, and in particular to a method and respective system for managing boot code of a computer system, wherein the system comprises at least a first and a redundant second boot memory portion, and wherein the system is booted from one of said portions, referred to as the active booting portion, the other boot portion being in a stand-by mode and being referred to as inactive boot portion. In order to increase the robustness of a computer system against failures due to errors in boot code updates it is proposed to perform the steps of: a) booting the system from said first one (default) of said two boot memory portions; b) verifying the correctness of the boot procedure, if not correct; c1) re-booting from said second boot portion, and c2) replicating the boot code from the active boot memory portion to the non-active boot memory portion, if correct; d) replicating the boot code from the active boot memory portion to the non-active boot memory portion; e) run normal operation mode.
摘要:
The present invention relates to boot code processing of a computer system, and in particular to a method and respective system for managing boot code of a computer system, wherein the system comprises at least a first and a redundant second boot memory portion, and wherein the system is booted from one of said portions, referred to as the active booting portion, the other boot portion being in a stand-by mode and being referred to as inactive boot portion. In order to increase the robustness of a computer system against failures due to errors in boot code updates it is proposed to perform the steps of: a) booting the system from said first one (default) of said two boot memory portions; b) verifying the correctness of the boot procedure, if not correct; c1) re-booting from said second boot portion, and c2) replicating the boot code from the active boot memory portion to the non-active boot memory portion, if correct; d) replicating the boot code from the active boot memory portion to the non-active boot memory portion; e) run normal operation mode.
摘要:
Mechanisms, in a processor chip, are provided for obtaining debug data from on-chip logic of the processor chip while the processor chip is in a secure mode of operation. The processor chip is placed into a secure mode of operation in which access to internal logic of the processor chip to control the internal logic of the processor chip, by mechanisms external to the processor chip, is disabled on a debug interface of the processor chip. A triggering condition of the processor chip is detected that is a trigger for initiated debug data collection from the on-chip logic. Debug data collection is performed from the on-chip logic to generate debug data. Data is output, by the processor chip to an external mechanism, on the debug interface based on the debug data.