摘要:
The present invention relates to a flame-retardant removable cover which may be applied to a mattress. The removable cover, when applied to mattress, may reduce the peak heat release rate and/or total energy released in accordance with 16 CFR 1633 testing protocols. The cover may comprise a non-woven material. The removable cover may also comprise a non-woven type construction and an elastomeric material. The removable cover may therefore be designed with respect to the different requirements of those mattresses to which it may be applied to assist in meeting open flame mattress flammability standards.
摘要:
The present disclosure relates to a highloft needlepunched fabric wherein said fabric may be formed by needlepunching a web at a penetration density of less than or equal to about 150 penetrations per square centimeter and a penetration depth of about 5-20 mm, wherein the needles are spaced apart 5 mm or greater.
摘要:
Catalyst for the polymerization and/or copolymerization of olefins which has a chromium content of from 0.01 to 5% by weight, based on the element in the finished catalyst, is supported on a finely divided inorganic support and is obtainable by concluding calcination at temperatures of from 350 to 1050° C. and has a zinc content of from 0.01 to 10% by weight, based on the element in the finished catalyst.
摘要:
Process for preparing supported, titanized chromium catalysts, which comprises the following steps: A) bringing a support material into contact with a protic medium comprising a titanium compound and a chromium compound, B) optionally removing the solvent, C) optionally calcining the precatalyst obtained after step B) and D) optionally activating the precatalyst obtained after step B) or C) in an oxygen-containing atmosphere at from 400° C. to 1100° C.
摘要:
A process for preparing supported, titanized chromium catalysts is disclosed. The process comprises A) bringing a support material into contact with a protic medium comprising a titanium compound and a chromium compound; B) optionally removing the solvent; C) optionally calcining the precatalyst obtained after step B); and D) optionally activating the precatalyst obtained after step B) or C) in an oxygen-containing atmosphere at from 400° C. to 1100° C.