Abstract:
A solid functional material comprises a functional agent such as a cleaning composition, a sanitizing agent, where a rinse agent, etc. in a solid block format. The solid block is formed by a binding agent that forms the active ingredients into a solid block. The binding agent comprises a phosphonate or amino acetate sequestrant, a carbonate salt and water in an E-Form hydrate. These materials at a specific mole ratio form a novel binding agent that can form functional materials into a solid matrix form.
Abstract:
The invention relates to a highly alkaline or mildly alkaline detergent composition having enhanced cleaning properties. The detergent combines a source of alkalinity and a blend of nonionic surfactants that enhances cleaning starchy soils. The blend of nonionic surfactants preferably includes an alkyl polyglycoside surfactant and a silicon surfactant having a hydrophobic silicon group and a pendant hydrophilic group. Preferably, the blend of nonionic surfactants includes a surfactant having a hydrophobic group and an ethylene oxide residue containing group and a polymer additive. A method for removing soil from an article is provided.
Abstract:
Solid block alkaline detergent compositions are disclosed comprising a source of alkalinity, and other detergent additives including sequestrants. The solid block detergents of the invention used a mixed inorganic and organic sequestrant composition that successfully softens service water used in manufacturing aqueous detergents from the composition, but also obtains substantially improved organic soil removal on dishware or flatware. The solid block detergents of the invention comprise large masses of the chemical ingredients having a weight of greater than about 500 grams in a solid block product format that is typically dispensed using a spray on water dispenser that creates an aqueous concentrate that is used in a washing machine.
Abstract:
A rinse agent composition is provided. The rinse agent composition includes a sheeting agent for promoting draining of sheets of water from a surface, and a humectant. The humectant is a component which retains at least 5 wt. % water when the humectant has been contained at an equilibrium of 50% relative humidity and room temperature. The sheeting agent and humectant are preferably provided at a ratio of between about 5:1 and about 1:3. A method for rinsing a substrate surface in the presence of high solids containing water is provided. High solids containing water is generally considered to be water having a total dissolved solids content in excess of 200 ppm.
Abstract:
The dimensionally stable alkaline solid block warewashing detergent uses an E-form binder forming a solid comprising a sodium carbonate source of alkalinity, a metal corrosion protecting alkali metal silicate composition, a sequestrant, a surfactant package and other optional material. The solid block is dimensionally stable and highly effective in removing soil from the surfaces of dishware in the institutional and industrial environment. The E-form hydrate comprises an organic phosphonate and a hydrated carbonate.
Abstract:
Solid block alkaline detergent compositions are disclosed comprising a source of alkalinity, and other detergent additives including sequestrants. The solid block detergents of the invention used a mixed inorganic and organic sequestrant composition that successfully softens service water used in manufacturing aqueous detergents from the composition, but also obtains substantially improved organic soil removal on dishware or flatware. The solid block detergents of the invention comprise large masses of the chemical ingredients having a weight of greater than about 500 grams in a solid block product format that is typically dispensed using a spray on water dispenser that creates an aqueous concentrate that is used in a washing machine.
Abstract:
The invention relates to a highly alkaline or mildly alkaline detergent composition having enhanced cleaning properties. The detergent combines a source of alkalinity and a blend of nonionic surfactants that enhances cleaning starchy soils. The blend of nonionic surfactants preferably includes an alkyl polyglycoside surfactant and a silicon surfactant having a hydrophobic silicon group and a pendant hydrophilic group. Preferably, the blend of nonionic surfactants includes a surfactant having a hydrophobic group and an ethylene oxide residue containing group and a polymer additive. A method for removing soil from an article is provided.
Abstract:
Solid block alkaline detergent compositions are disclosed comprising a source of alkalinity, and other detergent additives including sequestrants. The solid block detergents of the invention used a mixed inorganic and organic sequestrant composition that successfully softens service water used in manufacturing aqueous detergents from the composition, but also obtains substantially improved organic soil removal on dishware or flatware. The solid block detergents of the invention comprise large masses of the chemical ingredients having a weight of greater than about 500 grams in a solid block product format that is typically dispensed using a spray on water dispenser that creates an aqueous concentrate that is used in a washing machine.
Abstract:
The invention relates to a highly alkaline or mildly alkaline detergent composition having enhanced cleaning properties. The detergent combines a source of alkalinity and a blend of nonionic surfactants that enhances cleaning starchy soils. The blend of nonionic surfactants preferably includes an alkyl polyglycoside surfactant and a silicon surfactant having a hydrophobic silicon group and a pendant hydrophilic group. Preferably, the blend of nonionic surfactants includes a surfactant having a hydrophobic group and an ethylene oxide residue containing group and a polymer additive. A method for removing soil from an article is provided.
Abstract:
The invention relates to a highly alkaline or mildly alkaline detergent composition having enhanced cleaning properties. The detergent combines a source of alkalinity and a blend of nonionic surfactants that enhances cleaning waxy-fatty soils.