Abstract:
Additives including sulfur-containing compounds are used in methods of treating synthetic gypsum. The additives can thermally stabilize heavy metals, such as mercury. This thermal stabilization reduces mercury release from the synthetic gypsum. Illustrative, non-limiting examples of sulfur-containing compounds include inorganic sulfides, organic sulfides, organic compounds containing nitrogen and sulfur, organic compounds containing oxygen and sulfur, and polymers containing sulfur.
Abstract:
A process of treating a gas stream containing at least one mercury compound or species, the process comprising: applying a composition into said gas stream ahead of a particulate matter collection device, wherein said composition contains a compound having the following formula (SiO2)x(OH)yMzSaF, wherein (i) SiO2 is an optional component; (ii) M comprises at least one of the following metal or metalloid cations: boron, magnesium, aluminum, calcium, titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, cadmium, tin, platinum, gold, and bismuth; (iii) S comprises a sulfur-based species selected from at least one of the following: sulfide salts, dithiocarbamates, polymer-based dithiocarbamates, and polysulfide salts; (iii) F is an optional component and if present comprises at least one of the following: a functionalized organosilane, a sulfur-containing organosilane, an amine-containing organosilane, and an alkyl-containing organosilane at a surface area coverage of 0.01-100%; (iv) the molar ratio of y/x is equal to about 0.01 to about 0.5 and the molar ratio of x/z is equal to about 0.1 to about 300 if SiO2 is present, and if SiO2 is absent X is 0 and Z is 1; and (v) the molar ratio of a/z is about 0.5 to about 5.
Abstract:
Disclosed herein are methods for controlling mercury emissions, and more particularly, to methods for controlling mercury re-emissions from a wet flue gas desulfurizer by using applied electrochemical potential.
Abstract:
A method for the reduction and prevention of mercury emissions into the environment from combusted fossil fuels or other off-gases with the use of peracetic acid is disclosed. The peracetic acid is used for the capture of mercury from the resulting flue gases using a flue gas desulfurization system or scrubber. The method uses peracetic acid in conjunction with a scrubber to capture mercury and lower its emission and/or re-emission with stack gases. The method allows the use of coal as a cleaner and environmentally friendlier fuel source as well as capturing mercury from other processing systems.
Abstract:
Methods of modification of zero-valent iron (ZVI) to improve its performance in removing contaminants from a discharge stream. In some aspects, the methods include contacting ZVI-impregnated disks with solutions containing metal cations such as Ni2+, Cu2+, Fe2+, or Pd2+. In some aspects, a wastewater stream is treated with a metal cation solution, then passed over ZVI. Compositions for treating wastewater include ZVI that is modified with a metal cation solution.
Abstract:
A method for the reduction and prevention of mercury emissions into the environment from combusted fossil fuels or other off-gases with the use of peracetic acid is disclosed. The peracetic acid is used for the capture of mercury from the resulting flue gases using a flue gas desulfurization system or scrubber. The method uses peracetic acid in conjunction with a scrubber to capture mercury and lower its emission and/or re-emission with stack gases. The method allows the use of coal as a cleaner and environmentally friendlier fuel source as well as capturing mercury from other processing systems.
Abstract:
A method for the reduction and prevention of mercury emissions into the environment from combusted fossil fuels or other off-gases with the use of hypobromite is disclosed. The hypobromite is used for the capture of mercury from the resulting flue gases using a flue gas desulfurization system or scrubber. The method uses hypobromite in conjunction with a scrubber to capture mercury and lower its emission and/or re-emission with stack gases. The method allows the use of coal as a cleaner and environmentally friendlier fuel source as well as capturing mercury from other processing systems.
Abstract:
A method for the reduction and prevention of mercury emissions into the environment from combusted fossil fuels or off-gases having mercury with the use of hypoiodite is disclosed. The hypoiodite is used for the capture of mercury from the resulting flue gases using a flue gas desulfurization system or scrubber. The method uses hypoiodite in conjunction with a scrubber to capture mercury and lower its emission and/or re-emission with stack gases. The method allows the use of coal as a cleaner and environmentally friendlier fuel source as well as capturing mercury from other processing systems.
Abstract:
A method for the reduction and prevention of mercury emissions into the environment from combusted fossil fuels or off-gases having mercury with the use of hypoiodite is disclosed. The hypoiodite is used for the capture of mercury from the resulting flue gases using a flue gas desulfurization system or scrubber. The method uses hypoiodite in conjunction with a scrubber to capture mercury and lower its emission and/or re-emission with stack gases. The method allows the use of coal as a cleaner and environmentally friendlier fuel source as well as capturing mercury from other processing systems.
Abstract:
Methods for facilitating the removal of mercury from flue gases by converting elemental mercury to oxidized mercury and subsequently capturing the oxidized mercury. In one aspect, a method of removing mercury from a mercury-containing flue gas may include the steps of introducing into the flue gas a sulfide source in an effective amount to convert elemental mercury to gaseous oxidized mercury and then capturing the gaseous oxidized mercury.