摘要:
In a processor for generating a three-dimensional form model, data MX on an object having a three-dimensional form are read, while two-dimensional color image GX1 are read in correspondence to the form data MX. Then, color boundaries are discriminated in the color image GX1, and the form data MX are thinned except portions in correspondence to the color boundaries. Thus, the amount of data is reduced without losing information on the color boundaries of the form.
摘要:
Three-dimensional data processing device and three-dimensional data processing method for splicing together two pieces of three-dimensional data taken from different directions. Three-dimensional data and two-dimensional image data pertaining to a target object are inputted by a three-dimensional input camera from various directions. Two color images which are based on the two-dimensional image data inputted from two different directions are displayed on a display of a personal computer, and points of the two color images are specified by an operator. Two pieces of three-dimensional data corresponding to the two-dimensional image data are spliced together based on the points of the two color images (two-dimensional image data) by the personal computer.
摘要:
In order to generate three-dimensional form data having characteristic lines desired by a user from original three-dimensional form data, a closed surface consisting of longitudes and meridians is arranged so as to inscribe a three-dimensional form model, and the longitudes and the meridians are projected to a surface of the three-dimensional form to generate parametric curves running along the surface. Then, control points of the parametric curves are moved to adjust the curves so that a part of the parametric curves in correspondence to the movement of the control point moves along the surface of the form model. The curves adjusted are taken as three-dimensional form data of the form model.
摘要:
This invention is related to a three-dimensional measuring device for measuring three-dimensional positions of an objects. The three-dimensional measuring device comprises an optical projection system and an optical reception system. In a preliminary measurement prior to an actual measurement, the optical projection system projects slit light beam on the object with varying projection angle with in a narrow range, and the optical reception system receives the slit light beam reflected by the object and generates image signals corresponding to an amount of the received light synchronously with variation of the projection angle. Measurement conditions including intensity of the light beam and the projection angle for the actual measurement are set in accordance with the image signals of the actual measurement. Under the measurement conditions, the actual measurement is executed by projecting the light beam on the object with varying the projection angle within a wide range.
摘要:
The three-dimensional data input method uses the three-dimensional data input apparatus that includes a monitor screen for confirming an object and is constructed to input the three-dimensional data of the object by shooting the object. In accordance with the three-dimensional data inputted from a part of the object Q, an image of the three-dimensional shape model that corresponds to the shape is generated. The image of the three-dimensional shape model is displayed on the monitor screen as a guide image for framing. The framing is performed so that the guide image is overlapped on the portion of the object image corresponding to the guide image, so that the object is shot after the framing is performed.
摘要:
This invention is related to a three-dimensional measuring device for measuring three-dimensional positions of an objects. The three-dimensional measuring device comprises an optical projection system and an optical reception system. In a preliminary measurement prior to an actual measurement, the optical projection system projects slit light beam on the object with varying projection angle with in a narrow range, and the optical reception system receives the slit light beam reflected by the object and generates image signals corresponding to an amount of the received light synchronously with variation of the projection angle. Measurement conditions including intensity of the light beam and the projection angle for the actual measurement are set in accordance with the image signals of the actual measurement. Under the measurement conditions, the actual measurement is executed by projection the light beam on the object with varying the projection angle within a wide range.