Abstract:
Provided is a vibratory stimulation device including a first substrate, a connection band connected to both sides of the first substrate, and a vibration element array including a plurality of vibration elements provided on the first substrate, wherein each of the vibration elements includes a stand provided on the first substrate, a vibration film provided on the stand and in contact with the stand at an edge, a vibrator provided on an upper or lower surface of the vibration film, and an electrode wire connected to the vibrator, wherein the vibration film includes a material that is more flexible and stretchable than the stand.
Abstract:
Provided is a method of manufacturing an organic light emitting device, the method including forming a lower electrode on a lower substrate, forming an organic layer on the lower electrode, forming a light extraction layer including an adhesion layer and nanoparticles on an upper substrate, forming an upper electrode on the light extraction layer, and coupling the lower substrate to the upper substrate so that the upper electrode contacts the organic layer. The forming of the light extraction layer includes providing an adhesive between a first sacrificial substrate and the upper substrate, curing the adhesive to form the adhesion layer to form the adhesion layer, and removing the first sacrificial substrate to expose the adhesion layer. The first sacrificial substrate and the upper substrate are coupled to each other by the adhesion layer.
Abstract:
A display panel includes pixels, the pixels being configured to be driven in either a reflection mode or a light emission mode, the pixels comprises a first substrate comprising a light-transmitting material, a second substrate opposite to the first substrate, a light emitting element layer on the first electrode, the light emitting element layer comprising a light emitting material, the light emitting material being configured to emit light in the light emission mode by an oxidation of the light emitting material and a reduction of the light emitting material, a second electrode on a surface of the second substrate in a direction of the first substrate, a reflective element layer on the second electrode, the reflective element layer comprising a reflective material, the reflective material being configured to be colored or bleached in the reflection mode by an oxidation of the reflective material and a reduction of the reflective material.
Abstract:
A dual-mode display including a substrate and a plurality of sub-pixels on the substrate, in which each sub-pixel includes, a reflective device having an optical filter function which reflects different color according to electrical signals applied from outside the display, and an emissive device disposed on the reflective device, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
Provided is a dual-mode display including a substrate and a plurality of sub-pixels on the substrate, in which each sub-pixel includes an emissive device, a color selection reflector disposed on one side of the emissive device, and an optical shutter disposed on another side of the emissive device, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
An organic light-emitting device includes a substrate, a bottom electrode on the substrate, an organic light-emitting layer on the bottom electrode, and a top electrode on the organic light-emitting layer, wherein the top electrode includes a first electrode part, a grid-shaped or plate-shaped second electrode part on the first electrode part, and an adhesive layer on the second electrode part.
Abstract:
An organic light-emitting device includes a substrate, a bottom electrode on the substrate, an organic light-emitting layer on the bottom electrode, and a top electrode on the organic light-emitting layer, wherein the top electrode includes a first electrode part, a grid-shaped or plate-shaped second electrode part on the first electrode part, and an adhesive layer on the second electrode part.
Abstract:
Provided is a method of manufacturing an organic light-emitting device including a graphene layer. The method of manufacturing an organic light-emitting device according to the present invention may include providing a graphene donor unit including a patterned graphene layer, providing a device unit, and attaching the graphene layer of the graphene donor unit to an organic part. The device unit may include a substrate, a lower electrode, and the organic part which are sequentially stacked, and the organic part may include a dopant. The graphene donor unit may include the graphene layer, a release layer, and an elastic stamp layer which are sequentially stacked.
Abstract:
Disclosed is a vibration stimulation device. The vibration stimulation device includes a box having a cavity, vibrators disposed in the cavity; light emitting elements disposed between the vibrators or disposed on the vibrators, an upper vibration layer configured to connect the vibrators and the light emitting elements to edges of the box on the cavity, and bumps disposed on the vibrators.
Abstract:
Provided is a method for manufacturing an electronic device including a transparent conductive structure, the method including preparing a transparent electrode in which, among a first region and a second region, the first region is selectively surface-modified, preparing a mixed composition including a first composition and a second composition having a different polarity from the first composition, and applying the mixed composition onto the transparent electrode, wherein the applied mixed composition is disposed in the surface modified first region, and the mixed composition disposed in the first region is phase-separated into a first composition layer and a second composition layer disposed on the first composition layer.