Abstract:
A MIMO radar system includes one or more receivers and transmitters. Any one of the one or more transmitters provides a reference signal for injection-locking. The MIMO radar system generates multiple signals having phase and frequency which are injection-locked to those of the reference signal.
Abstract:
Disclosed is a pulse radar apparatus including a clock generator generating a transmission clock signal, a reception clock signal, and a sensitivity adjustment interval signal, a transmitter radiating a transmission pulse based on the transmission clock signal, and a receiver receiving a first pulse and a second pulse, which are associated with the transmission pulse, with different sensitivities based on the reception clock signal and the sensitivity adjustment interval signal.
Abstract:
An imaging radar apparatus for obtaining an image includes a plurality of transmission modules and a plurality of reception modules. Each of the plurality of transmission modules includes a main controller, a first printed circuit board, a transmission controller, a plurality of transmitters, and a plurality of transmit antennas. Each of the plurality of reception modules includes a second printed circuit board, a reception controller, a plurality of receivers, and a plurality of receive antennas. A transmission unit including the plurality of transmitters is disposed on a top surface of the first printed circuit board. The plurality of transmit antennas are linearly arranged on the top surface of the first printed circuit board. The transmission controller is disposed on a bottom surface of the first printed circuit board. A reception unit including the plurality of receivers is disposed on a bottom surface of the second printed circuit board.
Abstract:
The present disclosure relates to a pulse radar device comprising a memory that includes a first memory and a second memory, each storing a scan vector. The device also includes a clock generator that produces a transmission clock signal and a reception clock signal. The reception clock signal is generated by delaying the transmission clock signal by a clock delay value. Furthermore, the device includes a transmitter that generates a transmission pulse by accepting the transmission clock signal from the clock generator and emits the pulse. Additionally, the device includes a receiver that receives an echo pulse reflected from a target by accepting the reception clock signal from the clock generator. The receiver then calculates the received echo pulse to generate a representative scan vector.
Abstract:
Disclosed are a pulse radar apparatus that detects a position and a motion of a target, and an operating method thereof. The pulse radar apparatus includes a clock signal generator that outputs a transmission clock signal and a reception clock signal, a transmitter that generates a first signal, a receiver that receives an echo signal and the reception clock signal, and generates a second signal, and a signal processor that converts the second signal into a digital signal and analyzes the digital signal. The clock signal generator controls a transmission-to-reception clock delay, and generates a synchronization signal. The signal processor converts the digital signal into a representative value and analyzes the second signal using the representative value. The representative value is one of an accumulated sum of the digital signal in a time duration between synchronization signals and an average value of the digital signal in the time duration between synchronization signals.
Abstract:
Provided is a radar device including a clock generator, a transmitter, and a receiver. The clock generator may output a transmission clock, and output a reception clock after a delay from a time at which the transmission clock is output. The transmitter may include a transmission trigger signal generator to generate a transmission trigger signal based on the transmission clock and an oscillator configured to generate a first signal on the basis of the transmission trigger signal. The first signal and the transmission trigger signal may include a pulse, and a width and a magnitude of the pulse included in the first signal correspond to a width and a magnitude of the pulse included in the transmission trigger signal, respectively. The receiver may be configured to receive an echo signal corresponding to the first signal to generate a second signal based on the reception clock.
Abstract:
A radar device according to an embodiment of the inventive concept includes a clock generator, a transmitter, a receiver, and a signal processor. The clock generator outputs the transmission clock, outputs the reception clock at the second time after the delay from the first time when the transmission clock is outputted, and generates the notification signal when the delay has the minimum value. The transmitter emits a transmission signal based on the transmission clock. The receiver receives an echo signal corresponding to the transmission signal, and generates a first signal corresponding to the echo signal based on the reception clock. The signal processor obtains a third time point at which a delay has the minimum value based on the notification signal.
Abstract:
Disclosed are a pulse radar apparatus and an operating method of the pulse radar apparatus, the pulse radar apparatus including a transmitter configured to receive a reference signal as a transmission clock signal, and transmit a transmission pulse to an object based on the transmission clock signal, a negative feedback loop configured to delay the reference signal and output the delayed reference signal as a reception clock signal, and a receiver configured to restore, based on the reception clock signal, a reflection pulse received in response to the transmission pulse being reflected from the object, wherein the negative feedback loop is configured to generate a delay control signal using the reference signal and a predetermined waveform signal generated by a waveform generator, delay the reference signal based on the delay control signal, and adjust the delay control signal by controlling the waveform generator to change the predetermined waveform signal.