Abstract:
A dynamic resource allocating apparatus of a first base station managing a first cell in a cellular communication system calculates an interference metric of each user terminal received by each user terminal from a plurality of neighboring cells, calculates a coupling factor between the first base station and each neighboring base station of each neighboring cell by using the interference metric and a load of each user terminal, calculates available cell boundary resources of neighboring cells by using the coupling factor with respect to each neighboring base station, and allocates resources by using the cell boundary resources allocated to the first cell and the available cell boundary resources of the neighboring cells.
Abstract:
A random access method performed by a communication node may comprise: receiving RACH configuration information; measuring a distance between a base station and a terminal or a signal characteristic value corresponding to the distance between the base station and the terminal; determining a timing offset value to be applied to random access preamble transmission using the signal characteristic value, preset threshold value, and preset timing offset value; and transmitting a random access preamble generated on the basis of the RACH configuration information to the base station, wherein the threshold value and the timing offset value are included in the RACH configuration information.
Abstract:
Provided is a beam space sampling method of a receiver including an antenna including an active element and at least one parastic element. The beam space sampling method includes: varying a reactance value of the parasitic element to receive RF signals corresponding to beam patterns; measuring the quality of the received signal corresponding respectively to the beam patterns; and selecting beam patterns providing the signal quality equal to or higher than a threshold value.
Abstract:
Provided is a wireless signal receiver including: an analog-digital converter (ADC) converting an analog RF signal into a digital baseband signal; and a sub-sampling block dividing and processing the digital baseband signal into a first path signal and a second path signal, and extracting a complex baseband signal by using a relative sample delay difference between the first and second path signals, wherein the first path signal is a signal obtained by adjusting a sample delay and sampling rate of the digital baseband signal, and the second path signal is a signal obtained by filtering without adjusting the sampling rate of the digital baseband signal.
Abstract:
A dynamic resource allocating apparatus of a first base station that manages a first cell in a cellular communication system including the first cell and a plurality of cells adjacent to the first cell determines time resource division vector in which one time resource division period is formed of a plurality of time division intervals and calculates time resource division vector for maximizing utilities of user terminals in a set up objective function to update the time resource division vector. Among the plurality of time division intervals, a first time division interval is operated by a time resource reuse coefficient 1 for user terminals positioned in center regions of a first cell and a plurality of adjacent cells, and the remaining time division intervals excluding the first time division interval are operated by a time resource reuse coefficient n for user terminals positioned at edges of the first cell and the plurality of adjacent cells.
Abstract:
In a cellular communication system including a plurality of cells, a resource allocation apparatus of a base station determines a resource division ratio of a present resource frame using a traffic load of a plurality of cells that are measured for an immediately preceding resource frame and marginal utility of each partition, divides a present resource frame into a plurality of partitions according to the determined resource division ratio, and allocates a plurality of partitions to a user.
Abstract:
Disclosed is a dual band receiver which includes an analog-to-digital converter configured to convert a dual band analog RF signal into a dual baseband digital signal; and a first signal extractor configured to generate a first path signal and a second path signal from the dual baseband signal and to extract a first baseband signal using a relative sample delay difference between the first and second path signals, wherein the dual baseband signal includes the first baseband signal and a second baseband signal, the first path signal is a signal obtained by sample delay of the dual baseband signal and then down sampling of a resultant signal, and the second path signal is a signal obtained by down sampling of the dual baseband signal without sample delay.
Abstract:
In a wireless communication system, a base station to perform power control may include: a user detector to detect a presence of a user terminal by monitoring whether a registration state of the user terminal served by the base station corresponds to a registration complete state, a registration maintain state, or a registration release state; a control signal generator to generate a control signal for controlling power of at least one power device among a plurality of power devices included in a predetermined group, based on the detection result; and a control signal transmitter to transmit the control signal to the at least one power device among the plurality of power devices.
Abstract:
An operation method of a first communication node in a communication system includes setting a first parameter for multiplexing a plurality of information bits; setting a length of an orthogonal sequence corresponding to each of the plurality of information bits; setting a second parameter representing phase information corresponding to each of the plurality of information bits; generating orthogonal sequences of the plurality of information bits based on the first parameter, the second parameter, and the length of the orthogonal sequence; and transmitting the orthogonal sequences to a second communication node using radio resources.
Abstract:
A receiving device and method using a single RF chain includes a reception antenna module radiating a plurality of orthogonal beam patterns to receive a signal, a single RF chain processing a reception signal from the reception antenna module, a signal component extracting unit extracting a reception signal component corresponding to each beam pattern using the reception signal received through the reception antenna module and the single RF chain and a code value previously allocated to the plurality of beam patterns, and a beam pattern controller controlling a beam pattern radiated by the reception antenna module.