Abstract:
A method of a first terminal may include: identifying first RB set(s) to be used for SL communication among consecutive RB sets through an LBT procedure; identifying a first subchannel group included in the first RB set(s) and a second subchannel group including a first PRB in the first RB set(s), the first PRB being not included in the first subchannel group; configuring the first PRB within the second subchannel group as an SL communication resource; and transmitting, to a second terminal, control information indicating that the first PRB is configured as the SL communication resource.
Abstract:
A method of a transmitting terminal may include: determining a beam candidate set including two or more beams usable for sidelink communication with a receiving terminal from among a plurality of beams that can be beam-formed; determining a resource set for each beam within the beam candidate set through resource sensing, such that the resource set has candidate resources equal to or greater than a predetermined number of candidate resources; selecting a beam and a resource to be used for sidelink communication with the receiving terminal based on the beam candidate set and the resource set; and transmitting sidelink data to the receiving terminal using the selected beam and the selected resource.
Abstract:
Disclosed are various methods for transmitting or receiving data or control information having high reliability conditions. A method for operating a terminal which transmits uplink control information (UCI) includes: a step of generating UCI; a step of comparing the priority of an uplink (UL) control channel for the transmission of the UCI with the priority of a UL data channel when some symbols of the UL control channel and the UL data channel overlap; and a step of selecting the UL channel having a higher priority among the UL control channel and the UL data channel, and transmitting the UCI to a base station through the selected UL channel.
Abstract:
A dynamic resource allocating apparatus of a first base station managing a first cell in a cellular communication system calculates an interference metric of each user terminal received by each user terminal from a plurality of neighboring cells, calculates a coupling factor between the first base station and each neighboring base station of each neighboring cell by using the interference metric and a load of each user terminal, calculates available cell boundary resources of neighboring cells by using the coupling factor with respect to each neighboring base station, and allocates resources by using the cell boundary resources allocated to the first cell and the available cell boundary resources of the neighboring cells.
Abstract:
Disclosed are a multimode terminal that may simultaneously enhance utilization of a device and efficiency of a network by enabling a mobile terminal supporting a plurality of communication schemes to additionally support a relay function, and a method of relaying communication using the multimode terminal. A communication relay method of a multimode terminal according to an exemplary embodiment of the present disclosure includes: searching, by a base station, for terminals that support a plurality of communication schemes; selecting, by the base station from among the searched terminals, a relay terminal that satisfies a predetermined condition for performing a multimode relay function; requesting, by the base station, the relay terminal to perform the multimode relay function; and relaying, by the relay terminal in response to the request of the base station, communication between the base station and a target terminal.
Abstract:
Disclosed are various methods for transmitting or receiving data or control information having high reliability conditions. A method for operating a terminal which transmits uplink control information (UCI) includes: a step of generating UCI; a step of comparing the priority of an uplink (UL) control channel for the transmission of the UCI with the priority of a UL data channel when some symbols of the UL control channel and the UL data channel overlap; and a step of selecting the UL channel having a higher priority among the UL control channel and the UL data channel, and transmitting the UCI to a base station through the selected UL channel.
Abstract:
An operation method of a relay terminal may include: receiving, from a first base station to which the relay terminal is connected, a first area identifier for a first area corresponding to the first base station; generating a first virtual area identifier distinct from the first area identifier; transmitting the first virtual area identifier to a first remote terminal connected to the first base station through relaying of the relay terminal; performing a first area update procedure triggered by the first remote terminal based on the first virtual area identifier; and storing a first temporary identifier obtained based on the first area update procedure, wherein the first temporary identifier is used for a paging procedure for the first remote terminal.
Abstract:
Disclosed are methods and apparatuses for transmitting and receiving data channels in a communication system. An operation method of a terminal in a communication system may comprise receiving, from a base station, resource allocation information of a plurality of physical uplink shared channels (PUSCHs) used for repetitive transmission of a same transport block (TB); identifying a position of each of the plurality of PUSCHs in a time domain based on the resource allocation information; and repeatedly transmitting the same TB to the base station at the position of each of the plurality of PUSCHs. Therefore, performance of the communication system can be improved.
Abstract:
A security key management method performed in a PDCP layer of a terminal dual-connected to a first cell and a second cell may comprise receiving a PDCP PDU on which ciphering or integrity protection to which a first security key of the first cell or a second security key of the second cell is applied is performed; performing at least one of integrity verification and header decompression for the PDCP PDU based on the first security key; performing at least one of integrity verification and header decompression for the PDCP PDU based on the second security key; and determining a security key applied to the PDCP PDU, based on result of the at least one of integrity verification and header decompression based on the first security key and result of the at least one of integrity verification and header decompression based on the second security key.
Abstract:
An operation method of a first communication node, which controls a plurality of communication nodes included in a mobile xhaul network supporting mobility, may comprise performing an attach procedure between the first communication node and a second communication node among the plurality of communication nodes; configuring a path for communications between the second communication node and a third communication node for which attach procedure has been completed among the plurality of communication nodes; and supporting communications of the second communication node and the third communication node using the configured path.