Abstract:
Various of the disclosed embodiments concern removable ultraviolet (UV) curable dye sublimation ink to be used in various printing systems and printing methods. In some embodiments, the ink includes a dye component, a UV curable component, and a soluble or solvent-sensitive component. In order to print an image on a substrate, the ink is heated to a temperature sufficient to cause sublimation of at least the dye component. During the sublimation process, the dye is able to permeate the substrate and form a printed image. After the transfer process has been completed, a solvent can be jetted onto the substrate that causes the soluble component to dissolve. The washing process ensures that any residual ink remaining on the surface of the substrate is substantially removed.
Abstract:
A system and methods for printing and curing ink deposited on a substrate using a first light source and a second light source. In various embodiments, the first light source emits one or more wavelengths of electromagnetic radiation subtype C (UVC), and the second light source emits one or more wavelengths of electromagnetic radiation subtype A (UVA), subtype B (UVB), subtype V (UVV), or a combination thereof. The substrate is configured such that any ink deposited on the substrate by a printer head is predominantly exposed to the first light source prior to the second light source.
Abstract:
A technique is described for the application of three-dimensional (3D) relief to a substrate such as a ceramic tile using digital inkjet technology. A computer system receives information defining a relief pattern for forming the 3D relief using a digital inkjet printer. From the information, a feature vector is extracted comprising one or more features describing the 3D relief. A machine learning model is used to generate control commands based on the feature vector. The machine learning model is trained to generate the control commands to configure the digital inkjet printer to apply binder ink to a first region of a surface of the substrate. The applied binder ink is configured to form a protective layer over the first region of the surface of the substrate. The digital inkjet printer is configured to apply solvent ink to the surface of the substrate.
Abstract:
Various of the disclosed embodiments concern printing systems configured to deposit flexible dye sublimation inks onto flexible transfer materials. Together, the flexible ink and transfer material allow images to be transferred onto complex-shaped, i.e. non-planar, surfaces of a substrate. The flexible ink may be, for example, a thermoformable UV dye sublimation ink or a superflexible UV dye sublimation ink. In order to transfer an image onto the substrate, the transfer material is pressed onto the surface of the substrate. The substrate, transfer material, or both are heated to a temperature sufficient to cause the ink to sublimate. During the sublimation process, dye is able to permeate the substrate and form a transferred image. The flexible ink formulation may also include a soluble or solvent-sensitive component. In such embodiments, a solvent can be jetted onto the substrate and/or transfer material to remove residual ink.
Abstract:
Enhanced printing systems, structures, and processes provide ultrasonication of ink, such as to degas the ink, and/or to maintain the size of particles within the ink. At least one ultrasonic module, such as comprising any of an ultrasonic probe or an ultrasonic bath, is located within an ink delivery system. Ink is delivered to the ultrasonic module, and ultrasonic energy is applied to the ink, such as at a sufficient level and duration to degas the ink, and/or to reduce the size of particles within the ink. In some embodiments, the particles may be agglomerates, wherein the applied energy is configured to reduce the size of the agglomerates to a size that can be jetted through the print head. In other embodiments, the particles may be metallic particles, wherein the applied energy is configured to create smaller metallic particles that can be jetted with the ink through the print head.
Abstract:
An ink jet printer for printing on a substrate comprising a first print head outputting ink and defining an ink meniscus; a platen operable to carry the substrate; a support structure; and a print head mechanism coupled to the support structure and carrying the first print head. The print head mechanism moves the first print head relative to the platen. A controller controls the print head mechanism such that at least one of a predetermined acceleration and predetermined deceleration of the print head mechanism is achieved such that the ink meniscus is operably maintained.
Abstract:
Various of the disclosed embodiments concern printing systems configured to deposit flexible dye sublimation inks onto flexible transfer materials. Together, the flexible ink and transfer material allow images to be transferred onto complex-shaped, i.e. non-planar, surfaces of a substrate. The flexible ink may be, for example, a thermoformable UV dye sublimation ink or a superflexible UV dye sublimation ink. In order to transfer an image onto the substrate, the transfer material is pressed onto the surface of the substrate. The substrate, transfer material, or both are heated to a temperature sufficient to cause the ink to sublimate. During the sublimation process, dye is able to permeate the substrate and form a transferred image. The flexible ink formulation may also include a soluble or solvent-sensitive component. In such embodiments, a solvent can be jetted onto the substrate and/or transfer material to remove residual ink.