摘要:
The instant invention comprises a process for concurrently dealuminating and ion exchanging an acid stable sodium ion-containing zeolite by contacting the zeolite with an about 0.5 M to about 3 M nitric acid solution containing ammonium nitrate in an amount sufficient to fully exchange the sodium ions for ammonium and hydrogen ions at a temperature of at least about -10.degree. C. The instant invention also relates to the zeolites thus prepared by the instant process and catalysts prepared utilizing these zeolites.
摘要:
The instant invention comprises a process for concurrently dealuminating and ion exchanging an acid stable sodium ion-containing zeolite by contacting the zeolite with an about 0.5M to about 3M nitric acid solution containing ammonium nitrate in an amount sufficient to fully exchange the sodium ions for ammonium and hydrogen ions at a temperature of at least about -10.degree. C. The instant invention also relates to the zeolites thus prepared by the instant process and catalysts prepared utilizing these zeolites.
摘要:
The present invention relates to catalysts suitable for hydrogenating aromatics and olefins in hydrocarbon feedstocks boiling between about 125.degree. C. and about 625.degree. C. as well as the process for carrying out the hydrogenation. The catalysts consist of one or more Group VIII noble metal(s) on a support wherein the support is a Y-type zeolite prepared by contacting a starting Y-type zeolite having a unit cell size less than about 24.65, preferably less than about 24.4 angstroms, a silica to alumina molar ratio greater than about 5, preferably by greater than about 25 and an alkali metal content of less than about 0.30, preferably less than about 0.15 percent (basis metal) with one or more aqueous solution(s) comprising alkali(ne-earth) metal ions under conditions sufficient to provide a final alkali metal content (measured in terms of gram equivalent weight per gram of zeolite) of at least about 1.5 times greater than the alkali metal content (measured in terms of gram equivalent weight per gram of zeolite) of the starting zeolite. Preferred Group VIII metals are platinum and palladium and sodium is a preferred alkali(ne-earth) metal.
摘要:
This invention provides a process to convert linear alkenes such as butene-1 and butene-2 to methyl branched chain alkenes such as isobutylene using the hydrogen form of ferrierite. The hydrogen form of ferrierite has a pore size which allows the branched chain alkenes to form and diffuse out of the catalyst while reducing the formation of unwanted by-products, including dimers, trimers, aromatics and coke. This invention has been demonstrated with H-ferrierite in a laboratory scale reactor. Selectivities approaching 100% were demonstrated for isobutylene formation using H-ferrierite.
摘要:
An integrated process for converting a hydrocarbon feedstock having components boiling above about 100° C. into steam cracked products is described. The process first involves passing the feedstock to a hydrotreating zone to effect substantially complete decomposition of organic sulfur and/or nitrogen compounds. The product from the hydrotreating zone is passed to an aromatics saturation zone. The product is then passed to a steam cracking zone. Hydrogen and C1-C4 hydrocarbons, steam cracked naphtha, steam cracked gas oils and steam cracked tar are recovered. The amount of steam cracked tar produced is reduced by at least about 30 percent, and the amount of steam cracked tar produced is reduced by at least about 40 percent, basis the starting hydrocarbon feedstock which has not been subject to hydrotreating and aromatics saturation.
摘要:
An integrated process for converting a hydrocarbon feedstock having components boiling above about 100° C. into steam cracked products is described. The process first involves passing the feedstock to a hydrotreating zone at a pressure in the range of from about 400 psig to about 1,250 psig to effect substantially complete decomposition of organic sulfur and/or nitrogen compounds. The product from the hydrotreating zone is passed to a steam cracking zone. Hydrogen and C1-C4 hydrocarbons, steam cracked naphtha, steam cracked gas oil and steam cracked tar are recovered, where the amount of steam cracked tar produced is reduced by at least about 15 percent, basis the starting hydrocarbon feedstock which has not been subject to hydrotreating.
摘要:
This invention provides a process to convert linear alkenes such as butene-1 and butene-2 to methyl branched chain alkenes such as isobutylene using one-dimensional, medium pore zeolite catalysts and similar type catalysts such as SAPO's and MeAPO's. The pore size for the catalyst should be greater than 0.42 nm and less than 0.7 nm, preferably with a larger dimension of between 0.5 and 0.6 nm. This pore size allows the branched chain alkenes to form and diffuse out of the catalyst while reducing the formation of unwanted by-products, including dimers, trimers, aromatics and coke. This invention has been demonstrated with H-ferrierite, SAPO-11, and magnesium mordenite in a laboratory scale reactor. Selectivities ranging from about 50% to almost 100% were demonstrated for isobutylene formation using H-ferrierite, at temperatures ranging from about 340.degree. C. to about 440.degree. C.
摘要:
This invention relates to a process for the direct hydrogenation of wax esters which comprises contacting and reacting a wax ester with hydrogen under liquid phase hydrogenation conditions in the presence of a catalyst comprising a copper compound, a zinc compound, and at least one rare earth compound.
摘要:
This invention relates to a process for the direct hydrogenation of triglycerides which comprises contacting and reacting one or more triglyceride with hydrogen under liquid phase hydrogenation conditions in the presence of a catalyst comprising a copper compound, a zinc compound, at least one rare earth compound, and, optionally, a compound selected from the group consisting of aluminum, zirconium, magnesium, and mixtures thereof.
摘要:
This invention relates to a process for the direct hydrogenation of methyl esters which comprises contacting and reacting one or more detergent range methyl esters with hydrogen under predominantly liquid phase hydrogenation conditions in the presence of a catalyst comprising a copper compound, a zinc compound, and at least one compound selected from the group consisting of aluminum, zirconium, magnesium, a rare earth and mixtures thereof.