摘要:
A system to measure thickness of a shroud is provided. The system includes at least one resistive element embedded within the shroud. The system also includes an impedance measurement device that measures a total resistance associated with the at least one resistive element.
摘要:
A system to measure thickness of a shroud is provided. The system includes at least one resistive element embedded within the shroud. The system also includes an impedance measurement device that measures a total resistance associated with the at least one resistive element.
摘要:
A system to measure thickness of a shroud is provided. The system includes at least one resistive element embedded within the shroud. A reduction in a cross-sectional area of the at least one resistive due to wearing out of the shroud results in a change in a resistance of the at least one resistive. The system also includes an impedance measurement device that measures a total resistance associated with the at least one resistive element.
摘要:
A system to measure thickness of a shroud is provided. The system includes at least one resistive element embedded within the shroud. The at least one resistive element is embedded within a thermal barrier coating layer deposited on a base portion of the shroud and an abradable coating layer deposited on the thermal barrier coating layer or directly into the shroud. The system also includes an impedance measurement device that measures a total resistance associated with the at least one resistive element.
摘要:
A system to measure thickness of a shroud is provided. The system includes at least one resistive element embedded within the shroud. The system also includes an impedance measurement device that measures a total resistance associated with the at least one resistive element.
摘要:
A system to measure thickness of a shroud is provided. The system includes at least one resistive element embedded within the shroud. The system also includes an impedance measurement device that measures a total resistance associated with the at least one resistive element.
摘要:
A laser ignition system for an internal combustion engine, and more specifically a gas turbine engine, is provided. The system including a laser light source configured to generate a laser beam, an ignition port configured to provide optimized optical access of the laser beam to a combustion chamber and an optical beam guidance component disposed between the laser light source and the ignition port. The optical beam guidance component is configured to include optimized optic components to transmit the laser beam to irradiate on a fuel mixture supplied into the combustion chamber to generate a combustor flame in a flame region. A method for igniting a fuel mixture in an internal combustion engine is also presented.
摘要:
A laser ignition system for an internal combustion engine, and more specifically a gas turbine engine, is provided. The system including a laser light source configured to generate a laser beam, an ignition port configured to provide optimized optical access of the laser beam to a combustion chamber and an optical beam guidance component disposed between the laser light source and the ignition port. The optical beam guidance component is configured to include optimized optic components to transmit the laser beam to irradiate on a fuel mixture supplied into the combustion chamber to generate a combustor flame in a flame region. A method for igniting a fuel mixture in an internal combustion engine is also presented.
摘要:
A fuel preconditioning system for use with a pulse detonation combustor (PDC) makes use of a heat source to pyrolyze fuel prior to injecting it into the PDC for detonation. The fuel is decomposed into a more detonable form by pyrolysis in a conditioner that applies heat to the fuel in the absence of oxidizer. The heat may be provided by a hot section of the engine, including the walls of the PDC itself. The conditioned fuel is fed to the PDC and detonated.
摘要:
A method for controlling combustion dynamics is provided. The method includes providing a flow of partially premixed, premixed, or lean premixed fuel-air into a combustion chamber. The method also includes monitoring the combustion system for combustion dynamics. The method further includes actuating a system to control and abate combustion dynamics.