Abstract:
A detection system and method uses an implantable magnetic marker comprising at least one piece of a large Barkhausen jump material (LBJ). The marker is deployed to mark a tissue site in the body for subsequent surgery, and the magnetic detection system includes a handheld probe to excite the marker below the switching field for bistable switching of the marker causing a harmonic response to be generated in a sub-bistable mode that allows the marker to be detected and localised. The marker implanted may also be shorter than the critical length required to initiate bistable switching of the LBJ material.
Abstract:
A detection system and method uses an implantable magnetic marker comprising at least one piece of a large Barkhausen jump material (LBJ). The marker is deployed to mark a tissue site in the body for subsequent surgery, and the magnetic detection system includes a handheld probe to excite the marker below the switching field for bistable switching of the marker causing a harmonic response to be generated in a sub-bistable mode that allows the marker to be detected and localised. The marker implanted may also be shorter than the critical length required to initiate bistable switching of the LBJ material.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.
Abstract:
A method for detecting a marker in a body, comprising receiving an input signal from a probe, where the input signal is generated by a probe in response to detecting a marker signal from the marker; determining a marker proximity value based on the input signal, the marker proximity value corresponds to a distance between the probe and the marker; generating a feedback signal for output by a user interface device based on the marker proximity value, and outputting feedback signal, wherein range of the marker proximity value is divided into predetermined distance bands; and wherein at least one parameter of the feedback signal, or a rate of change of the at least one parameter of the feedback signal in relation to marker proximity value, is varied discontinuously at a boundary between at least two adjacent bands. The feedback signal may be an audio signal and/or a haptic signal.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.
Abstract:
A method for detecting a marker in a body, comprising receiving an input signal from a probe, where the input signal is generated by a probe in response to detecting a marker signal from the marker; determining a marker proximity value based on the input signal, the marker proximity value corresponds to a distance between the probe and the marker; generating a feedback signal for output by a user interface device based on the marker proximity value, and outputting feedback signal, wherein range of the marker proximity value is divided into predetermined distance bands; and wherein at least one parameter of the feedback signal, or a rate of change of the at least one parameter of the feedback signal in relation to marker proximity value, is varied discontinuously at a boundary between at least two adjacent bands. The feedback signal may be an audio signal and/or a haptic signal.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.