Method and system for water based phenolic binders for silicon-dominant anodes

    公开(公告)号:US11038176B1

    公开(公告)日:2021-06-15

    申请号:US16925111

    申请日:2020-07-09

    摘要: Systems and methods for water based phenolic binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a pyrolyzed water-based phenolic binder. The water-based phenolic binder may include phenolic/resol type polymers crosslinked with poly(methyl vinyl ether-alt-maleic anhydride), poly(methyl vinyl ether-alt-maleic acid), and/or Poly(acrylamide-co-diallyldimethylammonium chloride) (PDADAM). The electrode coating layer may further include conductive additives. The current collector may comprise one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer may include more than 70% silicon. The electrode may be in electrical and physical contact with an electrolyte, where the electrolyte includes a liquid, solid, or gel. The battery electrode may be in a lithium ion battery.

    Method and system for formation of cylindrical and prismatic can cells

    公开(公告)号:US11909058B2

    公开(公告)日:2024-02-20

    申请号:US18158494

    申请日:2023-01-24

    摘要: A method for formation of cylindrical and prismatic can cells may include providing a battery, where the battery includes one or more cells, with each cell including at least one silicon-dominant anode, a cathode, and a separator. The battery also includes a metal can that contains the one or more cells such that during formation a pressure between 50 kPa and 1 MPa is applied to the one or more cells. The battery may include strain absorbing materials arranged between the one or more cells and interior walls of the can. The strain absorbing materials may include foam. The strain absorbing materials may include a solid electrolyte layer. The strain absorbing materials may include PMMA, PVDF, or a combination thereof. The pressure during a formation process may be due to a thickness of the strain absorbing materials being thicker than an expansion of the one or more cells.

    METHOD AND SYSTEM FOR CARBON-COATED SILICON IN A PYROLYZED CARBON BINDER ELECTRODE ON COPPER CURRENT COLLECTORS

    公开(公告)号:US20220367847A1

    公开(公告)日:2022-11-17

    申请号:US17319726

    申请日:2021-05-13

    摘要: A method and system for carbon-coated silicon in a pyrolyzed carbon binder electrode on copper current collectors may include providing a metal current collector; forming a non-porous carbon coating on the metal current collector; coating silicon particles with carbon; forming an active material layer on the metal current collector, where the active material layer comprises at least 50% silicon particles by weight and a carbon source; and pyrolyzing the active material layer on the metal current collector, with no silicon particles in contact with metal from the metal current collector. The metal current collector may include copper. The battery anode may include no copper-silicon eutectic. The silicon particles may range in size from 2 to 50 μm. The active material layer may include aluminum carbide. A source for the pyrolyzed carbon may include polyimide and/or polyamide-imide. The current collector may be coated with the non-porous carbon coating using physical vapor deposition.