摘要:
Learning, inference, and decision making with probabilistic user models, including considerations of preferences about outcomes under uncertainty, may be infeasible on portable devices. The subject invention provides systems and methods for pre-computing and storing policies based on offline preference assessment, learning, and reasoning about ideal actions and interactions, given a consideration of uncertainties, preferences, and/or future states of the world. Actions include ideal real-time inquiries about a state, using pre-computed value-of-information analyses. In one specific example, such pre-computation can be applied to automatically generate and distribute call-handling policies for cell phones. The methods can employ learning of Bayesian network user models for predicting whether users will attend meetings on their calendar and the cost of being interrupted by incoming calls should a meeting be attended.
摘要:
Learning, inference, and decision making with probabilistic user models, including considerations of preferences about outcomes under uncertainty, may be infeasible on portable devices. The subject invention provides systems and methods for pre-computing and storing policies based on offline preference assessment, learning, and reasoning about ideal actions and interactions, given a consideration of uncertainties, preferences, and/or future states of the world. Actions include ideal real-time inquiries about a state, using pre-computed value-of-information analyses. In one specific example, such pre-computation can be applied to automatically generate and distribute call-handling policies for cell phones. The methods can employ learning of Bayesian network user models for predicting whether users will attend meetings on their calendar and the cost of being interrupted by incoming calls should a meeting be attended.
摘要:
Learning, inference, and decision making with probabilistic user models, including considerations of preferences about outcomes under uncertainty, may be infeasible on portable devices. The subject invention provides systems and methods for pre-computing and storing policies based on offline preference assessment, learning, and reasoning about ideal actions and interactions, given a consideration of uncertainties, preferences, and/or future states of the world. Actions include ideal real-time inquiries about a state, using pre-computed value-of-information analyses. In one specific example, such pre-computation can be applied to automatically generate and distribute call-handling policies for cell phones. The methods can employ learning of Bayesian network user models for predicting whether users will attend meetings on their calendar and the cost of being interrupted by incoming calls should a meeting be attended.
摘要:
Sensing, learning, inference, and route analysis methods are described that center on the development and use of models that predict road speeds. In use, the system includes a receiver component that receives a traffic system representation, the traffic system representation includes velocities for a plurality of road segments over different contexts. A predictive component analyzes the traffic system representation and automatically assigns velocities to road segments within the traffic system representation, thereby providing more realistic velocities for different contexts where only statistics and/or posted speed limits were available before. The predictive component makes predictions about velocities for road segments at a current time or at specified times in the future by considering available velocity information as well as such information as the properties of roads, geometric relationships among roads of different types, proximal terrain and businesses, and other resources near road segments, and/or contextual information.
摘要:
Sensing, learning, inference, and route analysis methods are described that center on the development and use of models that predict road speeds. In use, the system includes a receiver component that receives a traffic system representation, the traffic system representation includes velocities for a plurality of road segments over different contexts. A predictive component analyzes the traffic system representation and automatically assigns velocities to road segments within the traffic system representation, thereby providing more realistic velocities for different contexts where only statistics and/or posted speed limits were available before. The predictive component makes predictions about velocities for road segments at a current time or at specified times in the future by considering available velocity information as well as such information as the properties of roads, geometric relationships among roads of different types, proximal terrain and businesses, and other resources near road segments, and/or contextual information.
摘要:
The present invention relates to a system and methodology to facilitate collaboration and communications between entities such as between parties to a communication, automated applications and components, and/or combinations thereof. The systems and methods of the present invention include a service that supports collaboration and communication by learning predictive models that provide forecasts of one or more aspects of a user's presence and availability. Presence forecasts include a user's current location or future locations at different levels of location precision and of the availability to users of different devices or applications. Availability assessments include inferences about the cost of interrupting a user in different ways and a user's current or future access to one or more communication channels that may be supported by one or more devices with appropriate capabilities. The predictive models are constructed via statistical learning methods from data collected by considering user activity and proximity from multiple devices, in addition to analysis of the content of users' calendars, the time of day, and day of week, for example. Beyond ambient data collection, users can provide input via batch input tools or via intermittent probes of their situation and context. Various applications are provided that employ the presence and availability information supplied by the models in order to facilitate collaboration and communications between entities.
摘要:
A system and methodology is provided for improving directory operations within a system providing an electronic hierarchical directory of items. The system includes a component which analyzes probabilities and utilities associated with determining potential target directories for storing and accessing data, and a component for building a subset of the potential target directories that are predicted to be the target directory. The probabilities and/or utilities are functions of expected navigation costs associated with traversing from a displayed directory to at least one of the potential target directories. Methods in accordance with the present invention can be coupled with displays of substructures that format the substructures into a coherent hierarchical view.
摘要:
Methods and architectures for context-sensitive reminding and service facilitating are disclosed. The architectures monitor user context and activity, senses or infers relevant reminders, goals, such as those that come from a growing need of the user that should be fulfilled, and computes best reminders, and recommend plans on fulfilling need(s) in an optimum way. Statistical models of a user's knowledge and recall in different settings may be employed. Facilities, services, and merchants can be identified along a route that the user can take, and cost-benefit analysis is performed for determining which merchant(s) to select to fulfill the need(s). Routes may be created as opportunistic modifications of trips underway. Merchants can respond back with offers of sale to the user for all available needed items, and the user can respond with acceptance or denial of the offers. Merchants can also respond in a bidding fashion in order to gain user's patronage.
摘要:
Methods are described for ideally joining human and machine computing resources to solve tasks, based on the construction of predictive models from case libraries of data about the abilities of people and machines and their collaboration. Predictive models include methods for folding together human contributions, such as voting, with machine computation, such as automated visual analyses, as well as the routing of tasks to people based on prior performance and interests. An optimal distribution of tasks to selected participants of the plurality of participants is determined according to a model that considers the demonstrated competencies of people based on a value of information analysis that considers the value of human computation and the ideal people for providing a contribution.
摘要:
Methods are described for ideally joining human and machine computing resources to solve tasks, based on the construction of predictive models from case libraries of data about the abilities of people and machines and their collaboration. Predictive models include methods for folding together human contributions, such as voting, with machine computation, such as automated visual analyses, as well as the routing of tasks to people based on prior performance and interests. An optimal distribution of tasks to selected participants of the plurality of participants is determined according to a model that considers the demonstrated competencies of people based on a value of information analysis that considers the value of human computation and the ideal people for providing a contribution.