Abstract:
An internally lubricated, longitudinally split sleeve is positioned on a small diameter portion a mandrel having a rear end connected to a piston with a puller tool. The rear end of the split sleeve is flared and is against the front end of a tubular sleeve stop which immediately surrounds the mandrel. The puller tool includes a tubular sleeve holder which surrounds the sleeve stop. A forward main portion of the sleeve holder is separated by a pair of longitudinal slots into a pair of elongated fingers. The forward ends of the fingers define a sleeve and mandrel receiving end opening and jaws radially outwardly bounding the opening. The mandrel and sleeve holder are both extended and then the puller tool is moved into alignment with a sleeve and is moved endwise to push the mandrel through the sleeve until the flared end of the sleeve is against the sleeve stop. Then the sleeve holder is retracted. Next, the mandrel and sleeve are inserted into a hole in a workpiece and the tool is moved forwardly until the front ends of the jaws are against the workpiece. Then, the puller tool is operated to retract the mandrel through the sleeve and into the sleeve stop. Retraction of the mandrel moves first an increasing diameter portion of the mandrel and then a maximum diameter portion of the mandrel through the sleeve which radially expands the sleeve and cold expands the material immediately surrounding the hole in the workpiece. After the mandrel is retracted into the sleeve stop, the puller tool is moved away from the workpiece. The jaws of the sleeve holder engage and retain the sleeve so that the sleeve is pulled out from the hole in the workpiece.
Abstract:
A circular opening (48) is formed in a structural wall (12). A tubular shank (28) of a nut mounting grommet (26) is inserted into the opening (48). The grommet (26) is moved endwise to place a shoulder surface (34) on the base of a nut mounting cup (30) against the wall (12). A split sleeve (54) is installed on a small diameter portion (62) of a mandrel (52) and the mandrel and sleeve (52, 54) are inserted into the tubular shank (28) from the side of the wall (12) opposite the nut receiving cup (30). The mandrel (52) is then retracted to successively move increasing and maximum diameter portions (64, 66) of the mandrel (52) through the split sleeve (54). The mandrel portions (64, 66) exert a radially outwardly expanding force on the split sleeve (54). The split sleeve (54) in turn imposes a radially outwardly expanding force on the tubular shank ( 28). This causes a plastic deformation of the tubular shank (28), creating a tight interference fit between the tubular shank (28) and the sidewall of the opening (48). In this manner, the grommet (26) is firmly secured to the wall (12). Next, a nut (24) is inserted into the cup (30) with its threaded central opening (18) in alignment with the passageway through the tubular shank (28). The sidewall of the cup (30) is deformed, to place portions of a lip (46) endwise of the nut (20), in the path of removal of the nut (20) from the cup (30). The sidewall of the cup (30) includes wrench flats (98) outwardly bounding wrench flats (100) on the nut (20).
Abstract:
A split sleeve (96) is seated in a fastener hole (10) in the web (8) of a rail section (2). The tapered portion (26) of a mandrel (20) is firmly seated in the hole (10) inside the sleeve (96). A puller mechanism jaw (40) and a nosecap (78) are moved downwardly over the projecting rear end portion of the mandrel (20) to position the rear end portion in aligned U-shaped slots (50, 84) in the jaw (40) and nosecap (78). During the downward movement, guide surfaces (72) carried by the jaw (40) guide a chamfer (32) on the mandrel (20) into seating engagement with a tapered surface (56) on the jaw (40). The guide surfaces (72) may be formed by cylindrical pins (70) received into angled openings (58) in the jaw body. The front surface (88) of the nosecap (78) securely abuts the Web (8). With the mandrel ( 20) seated and the nosecap (78) abutting, the jaw (40) is moved rearwardly to pull the mandrel (20) through the hole (10) and cold expand the hole (10).
Abstract:
The present invention provides a method of installing a grommet within an opening in a wall of composite material. An opening (10) is formed in a wall of composite material (12). A countersink (20) is formed at one end of the opening (10). A grommet (22) is placed into the opening (10). A split sleeve (28) is placed on the small diameter portion (30) of a mandrel (32) which is attached to a power puller (36). The mandrel (32) with the split sleeve (28) is placed through the opening (10) and a grommet (22). The power puller (36) is then operated to pull the mandrel (32) back through the opening (10) and the grommet (22) thereby expanding the split sleeve (28) which in turn provides for the radial expansion of the grommet (22). During the radial expansion of the grommet (22), ends of fibers (16) are forced into the surface of the grommet (24 ). After the mandrel (32) has been pulled all the way through the split sleeve (28) both it and the split sleeve (28) are removed from the grommet (22). This leaves the grommet (22) securely fastened within the opening (10) in the composite wall (12).
Abstract:
A noncircular opening is formed in a material. A mandrel or mandrel and expansion sleeve are used for coldworking a circular region of the noncircular opening, and for forcing a hard metal insert into coldworking contact with the material immediately bordering the remaining portion of the noncircular opening. An insert may be placed within a slot to form with a circular closed end of the slot a substantially circular opening. An expansion sleeve is placed in the opening and an expansion mandrel is pulled through it, or an expansion mandrel is used alone in the opening, to coldwork the circular region of the opening. An insert may be placed within an opening and then a mandrel moved through an expansion sleeve placed in a circular opening in the insert, or a mandrel alone may be moved through the opening, to radially expand the insert and coldwork the material bounding the noncircular opening.
Abstract:
Metal cold-working tooling and a method of employing such tooling. The tooling is used to produce deformation in a workpiece, to provide a selected beneficial residual stress profile in the workpiece, in order to provide high fatigue life structures in a minimum number of manufacturing steps. An indenter is used to coldwork a workpiece, causing dimples in the workpiece. Preferably, the dimples are provided with a shape formed by application of a uniform pressure profile to the workpiece surface. As optimized, a relatively uniform beneficial residual stress profile is provided at both the surface and at the midplane apertures in a workpiece, so as to improve overall fatigue life. Also, an improved indenter tool profile shape is described, having a smoothly curved indenter surface portion. And, the use of consumable lamina wafers provides the benefit of easy application of uniform stress profile to a workpiece.
Abstract:
A method of manufacturing a fatigue life enhanced product from a plurality of workpiece parts. At least one fatigue enhancing operation is performed on a first workpiece at a first work station. At least one fatigue enhancing operation is performed on a second workpiece at a second work station. The first and second workpieces are transferred to a first assembly station, where the workpieces are joined to form a fatigue life enhanced product. Aerostructures manufactured according to the method may include components fabricated at different locations to have fatigue life enhancing properties, especially in bounding material adjacent to holes designed to accommodate fasteners. By use of the method, the final assembly step can thus avoid the necessity to include the processing of holes to enhance fatigue life, since this step has been performed prior to bringing components into position to be joined in the final shape or assembly of the airframe.
Abstract:
Metal coldworking tooling and a method of employing such tooling. The tooling is used to produce deformation in a workpiece, preferably via use of stress waves, to provide a selected beneficial residual stress profile in the workpiece, in order to provide high fatigue life structures in a minimum number of manufacturing steps. Preferably, action of an indenter causes propagation of stress waves to coldwork a workpiece, causing dimples in the workpiece. Preferably, the dimples are provided with a shape formed by application of a uniform pressure profile to the workpiece surface. By optimized use of the method, a relatively uniform beneficial residual stress profile is provided at both the surface and at the midplane apertures in a workpiece, so as to improve overall fatigue life. An improved indenter tool profile shape is described, having a smoothly curved indenter surface portion. Also, the use of a consumable lamina wafer technique provides the benefit of easy application of uniform stress profile to a workpiece.
Abstract:
A nosepiece apparatus for use in conjunction with a pull gun for prestressing fastener holes, or the like, in a workpiece, the nosepiece including an adapter (12) having a central passageway (19) therethrough and a rear end (20) adapted to be mounted to a pull gun. The forward end of the adapter (12) has a threaded connection for coupling the adapter (12) to an extension piece (14). The extension piece (14) is an elongated, tubular extension having threaded connections at both ends. A sleeve retainer (16) is provided having a threaded connection at its rearward end for securing the sleeve retainer (16) to the extension. The forward end of the sleeve retainer (16) is formed by a multiple of annularly-spaced, alternate splits (56) and fingers (58) extending substantially axially from the rearward end of the sleeve retainer (16). The threaded connection of the sleeve retainer (16) is adapted not only to be threadably coupled to the extension piece (14), but also to be directly coupled to the adapter ( 12).
Abstract:
A method of installing fastening elements, and rivetless fasteners for use with the method. Rivetless nutplate fasteners are installed in metal structures by providing flush fit barrel shaped plug or bushing portions in a hole in the structure as defined by an edge wall. The barrel portion is acted upon axially, and expanded radially outward toward the edge wall of the hole, to provide an interference fit. The ends of the barrel portion are machined as desired for flushness. Also, a hole is installed as necessary. Rivetless nutplates are easily installed, and the installation enhances fatigue life of the hole surrounding the barrel of the nutplate.