摘要:
Disclosed is a method for measuring the refraction of an individual by a refraction measuring appliance, including: an initial step of determining at least one initial value of a visuo-postural parameter of the individual; a step of processing the initial value in order to deduce at least one initial value of a regulating parameter of the refraction measuring appliance, the regulating parameter being associated with the visuo-postural parameter; a step of regulating the refraction measuring appliance according to the initial value of the regulating parameter; and a step of measuring the refraction of the individual by the measuring appliance regulated in this way. Also disclosed is a method for the optical design of an ophthalmic lens, and to a pair of glasses including such a lens.
摘要:
A method for determining a fitted position of an ophthalmic lens to be mounted on a spectacle frame equipping a wearer, the fitted position being defined with respect to a wearer referential linked to the head of the wearer. The method includes defining at least one fitting criteria relating to the positioning of the ophthalmic lens with respect to the spectacle frame, determining frame 3D data at least partially representative of the geometry and position of the spectacle frame with respect to the wearer referential, determining lens 3D data at least partially representative of the geometry of at least a peripheral portion of the ophthalmic lens, and determining the fitted position of said ophthalmic lens with respect to the wearer referential using the frame 3D data and said lens 3D data to fit the ophthalmic lens within the spectacle frame meeting the fitting criteria.
摘要:
A method for determining an optical system of a personalized progressive lens for a given wearer including: a) providing a mean direction of gaze determined for the wearer in a reference frame tied to the head of the wearer; b) determining a target value for at least one optical design parameter as a function of the mean direction of gaze determined in a); c) calculating the optical system of the progressive lens by an optical optimization procedure on the basis of target values, wherein the target value of each optical design parameter as a function of the mean direction of gaze determined in b) is a target value.
摘要:
A method of determining at least one behavioral parameter of a wearer for designing an ophthalmic eyeglass lens includes: a) acquiring a first data set from a first representation of the head of the wearer in three dimensions; b) determining the relative position in space of at least three particular points of the head based on the data set; c) acquiring a second data set from a second representation of the head in a natural posture, including at least one image of each of the three particular points; d) identifying the image of each of the particular points from step b) on the representation of step c); e) deducing information relating to the position and/or to the orientation of the head of the wearer during the determination of the second representation from this identification; and f) determining the behavioural parameter of the wearer based on the information from step e).
摘要:
An ophthalmic progressive addition lens for a presbyopic wearer which has a prescribed far vision mean refractive power a non nil prescribed addition, ADDp, the lens having a far vision reference point, a mean refractive power, PPO(α, β), a module of resulting astigmatism, ASR(α, β), a meridian line, ML(α, β), the (α, β) functions being determined in as-worn conditions of the lens by the wearer for gaze directions (α, β) joining the center of rotation of the eye, CRE, and the lens, wherein α is a lowering angle in degree and β is an azimuth angle in degree, and wherein a lens criterion, CRIT, fulfils following requirement: 0.38≤CRIT≤4.50, where: CRIT=NumeratorCRIT/DenominatorCRIT, NumeratorCRIT=(A1/A2)+(PPO(αFV, βFV)/(100·ADDp)); A1=α100%−α85%; A2=α100%−α60%; DenominatorCRIT=[(PeaksMean/ADDp)±(PPO(αFV,βFV)/(8·ADDp))]3.
摘要:
Disclosed is a method for constructing a model of a face, including: locating (L) a single plurality of characteristic points of the face, forming a corresponding plurality of specific models of the face each including the positions of the characteristic points of the face of the person at the time associated with the specific model in question; adjusting (A) by determining, for each specific model of the face, a model adjusted relative to a reference model of the face of the person, the adjusted model being obtained in accordance with the specific model in question such that the distance between the adjusted model and the reference model is minimal according to a given metric; and constructing (C), from the adjusted models obtained during the adjustment step (A), the model of the face of the person. Also disclosed are methods and devices for posture analysis using such a constructed model.
摘要:
Disclosed is a method of determining at least one visual behavior parameter of an individual, including: determination of the position of the center of rotation of at least one eye of the individual in a first reference frame tied to the head of the individual; capture, with the aid of an image capture device, of at least one image of at least one part of the body of the individual in a second reference frame, determination of the position and the orientation, in the second reference frame, of the first reference frame tied to the head of the individual, by searching for the position, in the second reference frame of a distinctive zone of the part of the body of the individual; determination of the position of the center of rotation of the eye in the second reference frame; and determination of the sought-after visual behavior parameter.
摘要:
An optical instrument includes: a collimation element (30) having a focal distance; a point light source (25-27) with a wavelength of between 700 and 1000 nm and a diameter less than or equal to a fiftieth of the focal distance, placed at a first focus of the collimation element, so that the light becomes a beam (20) of collimated light; a backscatterer (12); a support for receiving an ophthalmic lens (14), with the collimation element, support and backscatterer being placed so that the beam of collimated light encounters the lens location (15) where micro-etching is present; an image analyzing element (32) and an image capture element (31) linked to the analyzing element and including an objective lens (35) placed at a second focus of the collimation element, which objective lens is developed to provide the analyzing element with images of the backscatterer in order to identify and locate the micro-etching.
摘要:
Disclosed is a method for determining at least one visual behavior parameter of a person. The method includes the following steps: a step of encouraging the person to perform a visual test during which he observes at least one target position, a step of measuring an item of data that is representative of at least one viewing direction of the person during the visual test, a step of determining a reference viewing direction on the basis of the representative data measured, and a step of positioning, relative to the reference viewing direction, at least one measured target position that is determined, in a reference marker associated with the head of the person, on the basis of the data that is representative of the viewing direction of the person measured during the visual test.
摘要:
An instrument has a light-emitting and light-receiving assembly including an image capture unit and image processing unit; a backscatterer and an opening provided therein; a support for receiving an ophthalmic lens between the assembly and backscatterer, the assembly, support and backscatterer placed so that an incident light beam traverses the lens, strikes the backscatterer, returns and re-traverses the lens to arrive at the capture unit; the light-receiving assembly, the support, backscatterer and opening configured so that the assembly receives light from the beam; and the opening and a drive device for cyclically driving and making the backscatterer perform an identical movement in each cycle, configured so that a fixed zone opposite the backscatterer includes at least one part of which, over the course of a cycle, every point is at times perpendicular to the opening and at times perpendicular to a solid portion part of the backscatterer.