Abstract:
A method and apparatus for producing a coal/water mixture for combustion in a fluidized bed unit. To produce a hydraulically transportable coal/water mixture, crushed raw coal is preliminarily mixed with water in a first stage. This mixture is final mixed in a second mixing stage. The fine grain-size fraction required for the hydraulic transport is generated in the first mixing stage. The viscosity of the mixture present in the second mixing stage is determined, and as a function thereof additional water is added to the mixture in the second mixing stage, and/or the mixing process in the first mixing stage is altered in order to alter the fine grain-size fraction.
Abstract:
A fluidized bed combustion system that can be operated or controlled under pressure is provided. To eliminate the erosion or abrasion to which heat exchangers located in a fluidized bed combustion chamber are subjected due to the flue dust contained in the flue gas, no thermal withdrawal or exchange takes place in the combustion chamber of the inventive fluidized bed combustion system, although the reaction conditions remain the same. At least one controllable line for returning to the combustion chamber part of the flue gas, if necessary cooled by heat exchangers variously arranged outside the combustion chamber, branches off from the flue gas line downstream of a dust separator that is disposed in the flue gas line downstream of the combustion chamber. The main area of application is the production of electrical energy and heat for the generation of steam, as process heat, or as heat for a remote site, by means of a fluidized bed combustion system that can be operated or controlled under pressure.
Abstract:
In a method for operating a combination of a gas turbine process and a steam turbine process, in which the superimposed boosted gas turbine process is operated with compressed air and a combustible fluid, and the steam turbine process is operated via a fluidized bed furnace with a carbonaceous solid fuel, whereby the combustion in the fluidized bed furnace is performed with the oxygen-containing exhaust gases of the superimposed gas turbine process and electrical energy is generated with both processes, the efficiency is increased by expanding the exhaust gases of the superimposed gas turbine process only to an extent to which the fluidized bed furnace is operable as a pressurized fluidized bed and subjecting the exhaust gases of the pressurized fluidized bed furnace, after removing solid particles, to a second gas turbine process for further expansion and then to a heat exchange with the compressed air of the superimposed gas turbine process; the air for the superimposed gas turbine process is subjected to a two-stage compression with recooling, whereby the compressing energy for the first stage is derived from the second gas turbine process and the compressing energy for the second stage is derived from the superimposed gas turbine process.
Abstract:
A method and apparatus for scrubbing flue gas that is charged with noxious material. Scrubbing is accomplished via flowable absorption material in a gas-scrubbing unit having an atomizing device with at least one independent nozzle in which, pursuant to the air flow atomization principle, the absorbing material, as atomizing material, is atomized in parallel flow with a gas, as an atomizing medium, to form a fine droplet stream while at the same time the atomizing material and the atomizing medium are intensely mixed. Atomizing material is introduced into a nozzle in such a way that the material forms a film on one side of an atomizer edge disposed in the nozzle. Each atomizing medium stream is split into two partial streams. One of these partial streams is passed through a given nozzle in such a way that it passes over the film of atomizing material in the direction toward the nozzle outlet, so that the film is forced toward the outlet, where it is atomized via the atomizer edge, as is passes thereover, to form a fine droplet stream. The other partial stream is passed through the nozzle on that side of the atomizer edge remote from the film of atomizing material, where it is mixed with the fine droplet stream.
Abstract:
A method of removing dust from a dust-laden gas using gas-permeable filter elements that are disposed in tanks, with the gas flowing through the filter elements from the outside to the inside thereof and depositing dust on the outer surfaces thereof. Deposited dust is removed from the filter elements by pressurized gas cleaning pulses applied to the interior of the filter elements. A plurality of tanks are supplied in parallel with partial streams of the dust-laden gas. The ratios of the pressure differentials that occur across the filter elements to the flow rates of the individual partial streams, which ratios increase with time during the formation of a dust layer, are determined. When the ratio of one of the tanks reaches an experimentally determined limiting value, this tank and all of the other tanks are simultaneously cleaned.
Abstract:
A method and apparatus for burning carbonaceous materials in a fluidized bed reactor comprising a bottom region and a top region, and containing a fluidized bed, with the heat of combustion being dissipated at least via wall cooling surfaces, and comprising a recirculation system, including a labyrinth separator for recirculating the separated solids to the bottom region of the fluidized bed reactor. The solids are separated from the rising flow of flue gas by the labyrinth separator, which is disposed directly in the top region of the fluidized bed reactor, and are conveyed in the reactor itself along the wall cooling surfaces and are supplied to the bottom region of the reactor, either freely or in closed or partly or completely open recirculation passages. The main area of application is with a steam generator.