Abstract:
This invention relates to a catalyst system including the reaction product of a support (such as a fluorided silica support that preferably has not been calcined at a temperature of 400° C. or more), an activator and at least two different transition metal catalyst compounds; methods of making such catalyst systems, polymerization processes using such catalyst systems and polymers made therefrom.
Abstract:
This invention relates to a supported catalyst system comprising: (i) at least one first catalyst component comprising a group 4 metallocycle containing metallocene complex; (ii) at least one second catalyst component comprising a 2,6-bis(imino)pyridyl iron complex; (iii) activator; and (iv) support. The catalyst system may be used for preparing polyolefins, such a bimodal polyethylene, typically in a gas phase polymerization.
Abstract:
A biaxially-oriented film comprising a polyethylene having (A) a melt flow index of 1.0 g/10 min or more, (B) a density of 0.90 g/cm3 to less than 0.940 g/cm3, (C) a g′LCB of greater than 0.8, (D) ratio of comonomer content at Mz to comonomer content at Mw is greater than 1.0, (E) ratio of comonomer content at Mn to comonomer content at Mw is greater than 1.0, and (F) a ratio of the g′LCB to the g′zave is greater than 1.0, and where the film has a 1% secant in the transverse direction of 70,000 psi or more and Dart Drop of 350 g/mil or more.
Abstract:
A polyethylene suitable for use in blown film can comprise ethylene derived units and C3 to C12 α-olefin derived units at 0.5 wt % to 10 wt % of the polyethylene and have a reversed-co-monomer index (RCI,m) of 35 to 100, a comonomer distribution ratio (CDR-2,m) of 1.20 to 1.80, and a weight average molecular weight (Mw) to number average molecular weight (Mn) of 5 to 7.
Abstract:
Films produced with polyethylene blends having improved stiffness and heat sealing are provided herein. The films may have an average MD/TD 1% secant modulus greater than or equal to about 3300 psi. The films may also have a heat seal initiation temperature at 5 N of less than or equal to about 95° C. or a hot tack seal initiation temperature at 1 N of less than or equal to about 95° C.
Abstract:
This invention relates to ethylene polymers obtained using a catalyst system comprising fluorided silica, alkylalumoxane activator and at least two metallocene catalyst compounds (a bridged monocyclopentadienyl group 4 transition metal compound and a biscyclopentadientyl group 4 transition metal compound), where the fluorided support has not been calcined at a temperature of 400° C. or more, and is preferably produced using a wet mixing method, such as an aqueous method. The ethylene polymers have: 1) at least 50 mol % ethylene; 2) a reversed comonomer index, mol %, (RCI,m) of 85 or more; 3) a Comonomer Distribution Ratio-2 (CDR-2,m) of the percent comonomer at the z average molecular weight divided by the percent comonomer at the weight average molecular weight plus the number average molecular weight divided by 2 ([% comonomer at Mz]/[% comonomer at ((Mw+Mn)/2)] as determined by GPC of 2.3 or more; and 4) a density of 0.91 g/cc or more.
Abstract:
This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes a pyridyldiamido transition metal complex, a metallocene compound, a support material and, optionally, an activator. The catalyst system may be used for preparing multi-modal polyolefins.
Abstract:
This invention relates to higher olefin vinyl terminated polymers having an Mn of at least 200 g/mol (measured by 1H NMR) including of one or more C4 to C40 higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends and processes for the production thereof. These vinyl terminated higher olefin polymers may optionally include ethylene derived units.
Abstract:
This invention relates to an oriented polyethylene film comprising polyethylene having: (A) a melt flow index of 1.0 g/10 min or more, (B) a density of 0.90 g/cm3 to less than 0.940 g/cm3, (C) a g′LCB of greater than 0.8, (D) ratio of comonomer content at Mz to comonomer content at Mw is greater than 1.0, (E) ratio of comonomer content at Mn to comonomer content at Mw is greater than 1.0, and (F) a ratio of the g′LCB to the g′Zave is greater than 1.0, where the film has a 1% secant in the transverse direction of 70,000 psi or more and Dart Drop of 350 g/mil or more.
Abstract:
This invention relates to a biaxially-oriented polyethylene film comprising polyethylene having: (A) a melt index, I2, of 1.0 g/10 min or greater; (B) a density of 0.925 g/cm3 to 0.945 g/cm3; (C) a g′vis of less than 0.8; (D) an Mz of 1,000,000 g/mol or more; (E) an Mw/Mn of 5 or more; (F) an Mw of 100,000 g/mol or more; (G) a ratio of the g′LCB to the g′Zave is greater than 1.0; and (H) a Strain Hardening Ratio of 4 or more, where the film has a 1% secant in the transverse direction of 60,000 psi or more, a Dart Drop of 250 g/mil or more, and a ratio of 1% secant MD/1% secant TD is 0.65 or more.