Abstract:
A method for determining the amount and rate of corrosion which has occurred on the surface of a process unit by measuring corrosion with a corrosion sensor and measuring at least one parameter inside the process unit. Corrosion on the internal surfaces of a process unit can then be determined.
Abstract:
Systems and methods for algae processing and, more particularly, to systems and methods for having integrated solar steam systems. Trapped heated air accumulated within the solar steam system, such as a greenhouse-enclosed solar steam system, is swept over a cultivated algae slurry in order to facilitate drying thereof and increasing the thermal efficiency of a biofuel algae facility.
Abstract:
A system and method for optimizing the response of a metal loss sensor which is configured in a way that its insertion depth and orientation in the process fluid are adjustable. These adjustments affect local turbulence and thereby enable achieving a desired corrosion rate at the metal loss sensor. Corrosion rate comparison between the metal loss sensor and pressure containment boundary can be measured directly or indirectly by computing wall shear stresses at the sensor and the pressure containment boundary.
Abstract:
Systems and methods are provided for using size-reversing materials in vessels where direct heating is used to at least partially provide heat for reforming reactions under cyclic reforming conditions. An example of a size-reversing material is the combination of NiO and Al2O3. It has been discovered that size-reversing materials can undergo a phase transition that can assist with re-dispersion of metal at elevated temperatures. This can assist with maintaining catalytic activity for reforming over longer time periods in the presence of cyclic reforming conditions.
Abstract:
Catalyst systems are provided for reforming of hydrocarbons, along with methods for using such catalyst systems. The catalyst systems can be deposited or otherwise coated on a surface or structure, such as a monolith, to achieve improved activity and/or structural stability. The metal oxide support layer can correspond to a thermally stable metal oxide support layer, such as a metal oxide support layer that is thermally phase stable at temperatures of 800° C. to 1600° C. The catalyst systems can be beneficial for use in cyclical reaction environments, such as reverse flow reactors or other types of reactors that are operated using flows in opposing directions and different times within a reaction cycle.