摘要:
A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.
摘要:
A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.
摘要:
An implantable device for the acquisition and monitoring of brain bioelectric signals is described. The implantable device has a plurality of active electrodes configured to detect brain bioelectric signals, the active electrodes being arranged on a grid connected to an electronic module of the implantable device according to a predefined pattern. The active electrodes are connected to a microprocessor of the electronic module through respective paths formed on the grid and connected to at least one analog input unit arranged in the electronic module, the at least one analog input unit being in turn connected to at least one passive electrode and to the microprocessor through a data bus. The at least one analog input unit has an analog-to-digital converter for each active electrode connected thereto. A data acquisition and processing system, which includes the implantable device is also described.