Abstract:
A heat recovery device extends between an inlet and an outlet for exhaust gas, and includes a valve delimiting a direct passage for gas between the inlet and the outlet. The valve comprises a valve body housing a gate movable between a closing off position and a released position. A heat exchanger has an exchanger inlet upstream of the gate and an exchanger outlet downstream of the gate. The valve comprises a tube partially extending inside the valve body up to a mouth edge at a distal end, with the mouth edge extending in a plane. The gate has a plane contact surface configured to come in a direct contact with the mouth edge when the gate is in the closing off position.
Abstract:
A spiral exchanger has a winding axis and comprises an outer sheet and an inner sheet secured to one another in a fastening plane before winding and delimiting a space for a fluid between them. The outer sheet and the inner sheet are wound on themselves and each comprises a plurality of flexible areas and a plurality of rigid areas, the flexible areas being more flexible than the rigid areas during folding. The flexible areas and the rigid areas are extended along the winding axis, and at least one flexible area of the outer sheet and at least one flexible area of the inner sheet that delimit the space between them form a pair of flexible areas that are aligned in a same radial direction.
Abstract:
An ammonia generating device is delimited by an outer casing that includes a main reservoir and a secondary reservoir. The main reservoir is capable of reloading with ammonia the body in the secondary reservoir. A heater is capable of heating the bodies in each reservoir. A connector connects the main reservoir to the secondary reservoir. The heater comprises first and second heating devices respectively installed inside the main reservoir and the secondary reservoir and operating independently. The main reservoir is thermally decoupled from the secondary reservoir to generate a temperature gradient between both reservoirs.
Abstract:
A spiral exchanger has a winding axis and comprises an outer sheet and an inner sheet secured to one another in a fastening plane before winding and delimiting a space for a fluid between them. The outer sheet and the inner sheet are wound on themselves and each comprises a plurality of flexible areas and a plurality of rigid areas, the flexible areas being more flexible than the rigid areas during folding. The flexible areas and the rigid areas are extended along the winding axis, and at least one flexible area of the outer sheet and at least one flexible area of the inner sheet that delimit the space between them form a pair of flexible areas that are aligned in a same radial direction.
Abstract:
A spiral exchanger has a winding axis and includes an outer sheet and an inner sheet secured to one another in a fastening plane before winding, and delimiting a space for a fluid between them. The outer sheet and the inner sheet are wound on themselves and each sheet includes a plurality of flexible areas and a plurality of rigid areas. The flexible areas are more flexible than the rigid areas during folding. The flexible areas and the rigid areas are extended along the winding axis, and at least one flexible area of the outer sheet and at least one flexible area of the inner sheet that delimit the space between them form a pair of flexible areas that are aligned in the same radial direction.
Abstract:
The heat exchanger comprises a lower metal sheet, —an upper metal sheet, and a fin sheet delimiting the fins. The lower metal sheet, the upper metal sheet and the fin sheet form a three-layer structure wound in a spiral, whereby the lower metal sheet and the upper metal sheet delimit a first passage for the circulation of a first fluid. The heat exchanger has a set of spacers arranged in the first passage, whereby these spacers are rods separate from the lower and upper metal sheets.
Abstract:
An ammonia generating device for treating exhaust gases of internal combustion engines, notably of automobile vehicles, includes a reservoir having a body capable of releasing ammonia by desorption and a heating device positioned inside the reservoir to heat the body in the reservoir. The heating device comprises a heat generating element that has an elongated form. The heating device further includes at least one heat transfer feature laid out along an axial direction of the heat generating element and extending in a direction radial to the heat generating element.
Abstract:
The exhaust line comprises an injection segment including at least one cup having a large upstream face directly sprayed with the exhaust gases and dividing a circulation passage into an upstream space and a downstream space. The injection segment comprises at least one circumferential conduit fluidically connecting the upstream space to the downstream space. The cup defines at least one injection channel and at least one guiding area laid out so as to guide as far as said injection channel a portion of the exhaust gases spraying the large upstream face. An injection device includes a reagent injector that is oriented to inject the reagent substantially with a co-current or counter-current of the exhaust gases in the injection channel, with the latter extending from the injector as far as the inlet of the conduit.
Abstract:
A valve comprises a valve body, a flap, and a shaft driving the flap. At least one first bearing guides a first end of the shaft. The first end of the shaft includes an inner housing emerging axially. The first bearing includes a barrel axially engaged in the inner housing, such that no accumulation of condensates can occur in the inner housing when the first end of the shaft points downward.
Abstract:
An ammonia generating device for treating exhaust gases of internal combustion engines, notably of automobile vehicles, includes a reservoir having a body capable of releasing ammonia by desorption and a heating device positioned inside the reservoir to heat the body in the reservoir. The heating device comprises a heat generating element that has an elongated form. The heating device further includes at least one heat transfer feature laid out along an axial direction of the heat generating element and extending in a direction radial to the heat generating element.