Abstract:
A motor vehicle has a front engine compartment housing a powertrain unit and at least one side-member on which a safety device is mounted; the safety device is configured so as to move said powertrain unit sideways during an impact, towards the opposite side to that which is subject to the impact; the safety device is provided with a beam having a first end, spaced from a terminal portion of the side-member towards the outside of the engine compartment, and a second end fixed to the side-member at an intermediate portion next to the powertrain unit; the safety device is further provided with a pin, which is fixed with respect to the second end of the beam and projects from said second end through a hole of the intermediate portion towards the powertrain unit.
Abstract:
A motor vehicle has a front engine compartment housing a powertrain unit and at least one side-member on which a safety device is mounted; the safety device is configured so as to move said powertrain unit sideways during an impact, towards the opposite side to that which is subject to the impact; the safety device is provided with a beam having a first end, spaced from a terminal portion of the side-member towards the outside of the engine compartment, and a second end fixed to the side-member at an intermediate portion next to the powertrain unit; the safety device is further provided with a pin, which is fixed with respect to the second end of the beam and projects from said second end through a hole of the intermediate portion towards the powertrain unit.
Abstract:
An end structure of a motor vehicle body has two longitudinal struts which extend along respective axes have respective ends, on which respective attachment plates are fitted; the attachment plates have respective walls, which are ring-shaped about longitudinal axes and defined frontally by respective faces having substantially vertical and flat resting zones; two supporting plates rest respectively on these resting zones and are fixed to the walls and to two buffering elements, which are substantially coaxial to the struts; the two attachment plates further have respective tabs, which are radiused to said walls at an inner annular perimeter thereof and end with respective edges, which are longitudinally aligned with the supporting plates.
Abstract:
A motor vehicle has an engine compartment accommodating a powertrain and at least one strut, which is substantially parallel to an advancing longitudinal axis of the motor vehicle; the motor vehicle has a safety device configured so as to move the powertrain sideways during an impact, towards the side opposite to the one concerned by the impact; the safety device is provided with a beam having a first end, distanced from an end portion of the strut towards the outside of the engine compartment, and a second end fixed to the strut in a position which is horizontally beside the powertrain; the safety device is also provided with a restraining member fixed to the strut and to having a protruding portion arranged behind a wall of the beam.
Abstract:
A floor-panel structure for a vehicle includes a front body subassembly, a front floor structure, including a central longitudinal tunnel, two lateral longitudinal beams, connected to the floor structure and the body subassembly, and two intermediate longitudinal beams, which connect the floor structure to the body subassembly and extend in areas between the lateral longitudinal beams and central longitudinal tunnel. The lateral longitudinal beams each include a sheet-metal profile element having an open cross section, a front portion reinforced for withstanding relatively high axial loads, and a remaining portion that is more ductile than said front portion so as to be more liable to collapse. Each lateral longitudinal beam is constituted by a single sheet element of steel, and said reinforced front portion is constituted by a hardened portion obtained by subjecting only the front portion to a thermal treatment using high-frequency induction heating.
Abstract:
A motor vehicle has an engine compartment accommodating a powertrain and at least one strut, which is substantially parallel to an advancing longitudinal axis of the motor vehicle; the motor vehicle has a safety device configured so as to move the powertrain sideways during an impact, towards the side opposite to the one concerned by the impact; the safety device is provided with a beam having a first end, distanced from an end portion of the strut towards the outside of the engine compartment, and a second end fixed to the strut in a position which is horizontally beside the powertrain; the safety device is also provided with a restraining member fixed to the strut and having a protruding portion arranged behind a wall of the beam.
Abstract:
A floor-panel structure for a vehicle includes a front body subassembly, a front floor structure, including a central longitudinal tunnel, two lateral longitudinal beams, connected to the floor structure and the body subassembly, and two intermediate longitudinal beams, which connect the floor structure to the body subassembly and extend in areas between the lateral longitudinal beams and central longitudinal tunnel. The lateral longitudinal beams each include a sheet-metal profile element having an open cross section, a front portion reinforced for withstanding relatively high axial loads, and a remaining portion that is more ductile than said front portion so as to be more liable to collapse. Each lateral longitudinal beam is constituted by a single sheet element of steel, and said reinforced front portion is constituted by a hardened portion obtained by subjecting only the front portion to a thermal treatment using high-frequency induction heating.
Abstract:
An end structure of a motor vehicle body has two longitudinal struts which extend along respective axes have respective ends, on which respective attachment plates are fitted; the attachment plates have respective walls, which are ring-shaped about longitudinal axes and defined frontally by respective faces having substantially vertical and flat resting zones; two supporting plates rest respectively on these resting zones and are fixed to the walls and to two buffering elements, which are substantially coaxial to the struts; the two attachment plates further have respective tabs, which are radiused to said walls at an inner annular perimeter thereof and end with respective edges, which are longitudinally aligned with the supporting plates.