Abstract:
There is provided an image inspection system. An image reading unit reads a formed image which is formed on a recording medium based on original image data to generate read image data. A determination unit compares the read image data and the original image data to determine whether or not the formed image includes a defective region. An extraction unit extracts an image of characters present around the defective region from the read image data. An image display device displays the image of the characters and an image of the defective region such that both the images overlap with each other.
Abstract:
Provided is an image reading apparatus including an imaging unit that images light incident from a medium on which an image is formed, a measurement unit that measures a color value on an image, based on image data obtained by the imaging unit, in correspondence with a position on the image, a generation unit that generates error information indicating an error included in the color value according to the color value measured by the measurement unit and a relative position of the position on the image with respect to an optical axis of the imaging unit, and an output unit that outputs the error information generated by the generation unit and the measured color value.
Abstract:
Provided is an image reading apparatus including a guide plate that is movable between a first position and a second position and guides a medium at one side thereof when disposed at the first position, a retention member that is rotatable about an axis intersecting a direction in which the medium is guided, that has a first side surface and a second side surface which has a curvature greater than a curvature of the first side surface, and that retains plural color samples on the second side surface, a reading unit that reads, at a reading position, an image formed on the medium guided by the guide plate, and a rotating unit that causes the retention member to rotate such that the other side of the guide plate and the first side surface face each other and the plural color samples are moved to the reading position.
Abstract:
When defects occur in four places of a print data region of a paper P1 as illustrated in FIG. 3A, four code images are formed on an interleaving paper P2 as illustrated in FIG. 3B, more specifically, four code images are formed on the interleaving paper P2 such that the positions of plural defect occurrence portions in the paper P1 are aligned with the positions of plural code images formed in the interleaving paper P2, respectively, and the sizes of the code images are made to be different depending on the defective degree of the defects occurring at the defect occurrence portions of the paper P1, specifically, the larger the defective degree is, the larger the code image is.
Abstract:
An image is read from a recording medium via first and second optical imaging systems disposed such that respective reading regions partially overlap each other in a principal scanning direction on a reading surface. A sum of distances over which first and second images captured by the first and second optical imaging systems, respectively, are displaced in the principal scanning direction with respect to a reference point included in a region in which the reading regions overlap each other is calculated. First and second distances, over which the first and second images are displaced in the principal scanning direction, respectively, are calculated using the sum and first and second reading angles at which the first and second optical imaging systems, respectively, read the reference point. Positions of the first image and the second image in the principal scanning direction are corrected using the first distance and the second distance, respectively.
Abstract:
Provided is a transport device including plural rollers that are provided on a transporting path on which a sheet is transported in a transport direction and is subjected to a process at a process position, and transport the sheet which comes into contact with surfaces of the rollers in the transport direction by rotation of the rollers, among the plural rollers, first rollers that are provided closest to the process position, among the plural rollers, second rollers that are provided closest to the first rollers on an opposite side with respect to the process position, and a driving unit that drives the first rollers and the second rollers to rotate so that a speed of a surface of the first roller is faster than a speed of a surface of the second roller at least while the sheet passes through the process position.
Abstract:
Provided is an image reading device including an irradiation section that irradiates a reading position with light, a color chart that includes plural color patches, and that is provided on a curved surface of a rotatable roller, an image capturing section that captures an image of the color chart at the reading position, and that outputs image signals which express the captured image, a correction section that corrects the image signals using a correction coefficient corresponding to the curved surface, and a calibration section that performs calibration using the image signals, which are corrected by the correction section, and representative color values of the plural color patches, the representative color values being stored in advance.
Abstract:
Provided is an image reading apparatus, including a reading portion which reads an image and generates gradation values of each pixel, a calculation portion which calculates a coefficient group that allows the gradation values of each pixel generated as the reading portion reads a reference image, to be close to the gradation values of the pixels which correspond to image data forming the reference image, divides plural regions including an overlapped part in which the reference images are overlapped with each other, and calculates the coefficient group in each region, and a correction portion which corrects the gradation values of each pixel generated as the reading portion reads a correction target image, and corrects the gradation values of the correction target which correspond to the gradation values of the pixels of the overlapped part using the coefficient group.
Abstract:
A recording material processing device, includes: an accumulation unit that is accumulated with a plurality of recording materials each of which is a recording material formed with an image by an image forming unit and inspected by an inspection unit, where the image forming unit that forms the image on the recording material based on original image data; and a processing unit that removes the recording material which was determined to have a defect which occurred in the image by the inspecting unit, among the plurality of recording materials and adds a new recording material on which a same image is formed by the image forming unit, to the plurality of recording materials, the same image being based on the original image data of the image formed on the defective recording material.