Abstract:
A liquid ejection apparatus includes: a liquid ejection head; a long wiping member configured to come in contact with and wipe a liquid ejection face of the head; a wiping member conveyance device configured to drive the wiping member to be conveyed in a lengthwise direction of the wiping member; a pressing member configured to cause the wiping member to come in contact and pressed against the liquid ejection face when the pressing member is placed at a first position; and a slack elimination mechanism configured to push down the pressing member to a second position lower than the first position before the wiping member is brought into contact with the liquid ejection face, and to stop pushing the pressing member so as to move the pressing member along with the wiping member to the first position to bring the wiping member into contact with the liquid ejection face.
Abstract:
A nozzle surface wiping apparatus wipes a nozzle surface of a droplet ejection head while moving relatively with respect to the head. The apparatus includes: a band-shaped wiping web; a pay-out spindle which pays out the web; a take-up spindle which is rotated to take up the web; a pressing device which causes the web travelling between the pay-out spindle and the take-up spindle to be pressed against the nozzle surface; a drive roller around which the web travelling between the pressing device and the take-up spindle is wrapped, the drive roller being rotated to apply conveyance force to the web toward the take-up spindle; and a driving device which drives the drive roller and the take-up spindle in such a manner that a velocity at which the web is taken up by the take-up spindle is faster than a velocity at which the drive roller applies the conveyance force to the web.
Abstract:
According to the present invention, firstly, since the cleaning liquid is deposited onto the nozzle surface by the nozzle surface cleaning liquid deposition device, then it is possible to raise the dissolving effect, which is a chemical effect of dissolving adhering material which is adhering to the nozzle surface. Consequently, it is possible to remove the adhering material readily by subsequently wiping the nozzle surface with the wiping member, and hence the physical effects can also be improved. Furthermore, since the cleaning liquid is deposited so as to wet the wiping member, then it is possible to suppress the drawing out of liquid from the nozzles due to the absorbing characteristics of the wiping member, and therefore ejection defects due to solidification of drawn out liquid can be prevented. Consequently, it is possible to improve ejection stability of the droplet ejection head.
Abstract:
A head cleaning method of wiping and cleaning a nozzle surface of a head with a band-shaped liquid absorbing body by, while pressing and abutting a pressing member on which the liquid absorbing body that travels is wrapped against the nozzle surface of the head, sliding the pressing member over the nozzle surface of the head, includes: a first cleaning step of wiping and cleaning the nozzle surface of the head with a non-wet region of the liquid absorbing body; a wet region forming step of forming a wet region on the liquid absorbing body; and a second cleaning step of wiping and cleaning the nozzle surface of the head with the wet region of the liquid absorbing body.
Abstract:
Provided are a nozzle wiping sheet, a nozzle wiping unit, and an image forming apparatus capable of preventing occurrence of streaks during printing immediately after maintenance. A wiping member (120) wipes a nozzle surface (57K) of a jetting head (56K) provided with a nozzle through which liquid droplets are jetted, in which a shape of the liquid droplet added dropwise to the wiping member (120) after a cleaning liquid (108) is added to the wiping member (120) satisfies the following condition when an aspect ratio of the liquid droplet after 40 seconds after the addition of the cleaning liquid (108) is assumed to be R, and the R is 1.3 or more.
Abstract:
Provided are a wiping mechanism, a liquid droplet jetting apparatus, and a wiping method capable of securing an absorption capacity of a wiping member which absorbs a liquid adhered to a nozzle surface while preventing infiltration of bubbles into a nozzle when the nozzle surface is wiped by the wiping member. The nozzle surface is wiped by the wiping member which has one surface 200A that comes into contact with the nozzle surface in which a plurality of nozzles through which liquid droplets are jetted are formed, and has a plurality of voids M that form capillaries from the one surface 200A side to the other surface 200B side, the voids M being greater in size on the other surface 200B side than on the one surface side 200A among the plurality of voids M.
Abstract:
A liquid ejection apparatus includes: a liquid ejection head; a long wiping member configured to come in contact with and wipe a liquid ejection face of the head; a wiping member conveyance device configured to convey the wiping member in a lengthwise direction of the wiping member; an elastic member configured to elastically deform and apply a force to cause the wiping member to be pressed against the liquid ejection face through a pressing member when the wiping member comes in contact and pressed against the liquid ejection face; and a slack eliminating member arranged in a front side of the head in a direction of travel of the head with respect to the wiping member, the slack eliminating member being configured to eliminate slack in the wiping member caused by elastic deformation of the elastic member when the wiping member comes in contact with the slack eliminating member.