Abstract:
The invention relates to an optical compensation film for IPS or FFS-mode liquid crystal display devices, having the tilt angle β[°] not equal to zero, β[°] being defined as φ giving the minimum value of retardation R[φ] which is retardation measured for incident light coming in a direction tilted by φ° from a normal line relative to the film-plane, the direction being in a plane including the direction perpendicular to the in-plane slow axis thereof and the normal line; and having retardation along the thickness direction at a wavelength of 550 nm, Rth(550), not equal to zero.
Abstract:
A liquid crystal display device includes: a first polarizing film; a first retardation region; a liquid crystal cell which includes a liquid crystal layer sandwiched between a pair of substrates, in which liquid crystal molecules in the liquid crystal layer are oriented parallel to surfaces of the pair of substrates at a time of black display; and a second polarizing film, a slow axis of the first retardation region is arranged orthogonally or parallel to a long axis of the liquid crystal molecule at a surface of the liquid crystal layer at a side of the substrate of the liquid crystal cell adjacent to the first retardation region in a state of no application of voltage, the liquid crystal cell operates in a lateral electric field mode, and the first retardation region includes a first retardation layer and a second retardation layer as defined herein.
Abstract:
There are provided a circularly polarizing plate which includes an optically anisotropic layer formed by using a discotic liquid crystal compound and an optically anisotropic layer formed by using a rod-like liquid crystal compound, inhibits an alignment defect of the rod-like liquid crystal compound, and has excellent visibility. The circularly polarizing plate has an optical laminate and a polarizing film.
Abstract:
To provide an optically-compensatory film that can improve the contrast, to provide a polarizing plate and a liquid crystal display including the optically-compensatory film and a method of producing the optically-compensatory film. An optically-compensatory film including a transparent support; and at least one optically anisotropic layer including a liquid crystal composition containing liquid crystal compounds, in the transparent support; wherein when the optically-compensatory film is disposed between two polarizing plates in a cross nicol state, degree of depolarization as seen from the front face is 0.000022 or less, and degree of depolarization as seen from a polar angle of 50° from an absorption axis direction of one of the polarizing plates is 0.00077 or less.
Abstract:
The invention relates to an optical compensation film for IPS or FFS-mode liquid crystal display devices, having the tilt angle β[°] not equal to zero, β[°] being defined as φ giving the minimum value of retardation R[φ] which is retardation measured for incident light coming in a direction tilted by φ° from a normal line relative to the film-plane, the direction being in a plane including the direction perpendicular to the in-plane slow axis thereof and the normal line; and having retardation along the thickness direction at a wavelength of 550 nm, Rth(550), not equal to zero.
Abstract:
A liquid crystal display includes: a first polarizer; a liquid crystal cell including a liquid crystal layer containing liquid crystal molecules horizontally aligned to a face of a substrate; and a second polarizer. The liquid crystal display further includes a first optical compensation film disposed between the first polarizer and the liquid crystal cell, an absorption axis of the first polarizer, an optical axis of the first optical compensation film, and an optical axis of the liquid crystal layer being parallel to each other in a view of the liquid crystal cell in a direction orthogonal to the face of the substrate of the liquid crystal cell. The optical axis of the liquid crystal layer of the liquid crystal cell and the optical axis of the first optical compensation film have a tilt angle from the face of the substrate of the liquid crystal cell in a same direction.