Abstract:
The magnetic recording medium has a magnetic layer containing multiple nonmagnetic particles having a ratio, major axis length/minor axis length, of less than or equal to 1.5, the multiple nonmagnetic particles are present in the magnetic layer in a state where, when the depth to which each of the multiple nonmagnetic particles is embedded in the magnetic layer in observation of a sectional image picked up by SEM is denoted as b and the thickness of the magnetic layer as t, the average value of the ratio of b/t is less than or equal to 0.9, and the number of protrusions 5 nm or greater in height is 800 or greater and the number of protrusions 20 nm or greater in height is 20 or less as measured by AFM per an area 40 μm×40 μm on the magnetic layer side surface of the magnetic recording medium.
Abstract:
An aspect of the present invention relates to a method of manufacturing hexagonal ferrite magnetic powder, which comprises preparing a melt by melting a starting material mixture comprising a hexagonal ferrite-forming component and a glass-forming component and rapidly cooling the melt to obtain a solidified product, heating the solidified product to precipitate hexagonal ferrite magnetic particles and glass components in the solidified product, subjecting the solidified product to an acid treatment following the heating to remove the glass components by dissolution, incorporating the hexagonal ferrite magnetic particles obtained following the acid treatment into an acidic aqueous solution, followed by separating the particles dispersed in the aqueous solution and the precipitated particles, and subjecting the precipitated particles to a cleaning treatment and then collecting the particles.
Abstract:
The magnetic recording medium has a magnetic layer containing multiple nonmagnetic particles having a ratio, major axis length/minor axis length, of less than or equal to 1.5, the multiple nonmagnetic particles are present in the magnetic layer in a state where, when the depth to which each of the multiple nonmagnetic particles is embedded in the magnetic layer in observation of a sectional image picked up by SEM is denoted as b and the thickness of the magnetic layer as t, the average value of the ratio of b/t is less than or equal to 0.9, and the number of protrusions 5 nm or greater in height is 800 or greater and the number of protrusions 20 nm or greater in height is 20 or less as measured by AFM per an area 40 μm×40 μm on the magnetic layer side surface of the magnetic recording medium.
Abstract:
The magnetic tape has a nonmagnetic layer, a magnetic layer, and a backcoat layer; with one or both of the magnetic layer and nonmagnetic layer comprising at least one type of lubricant; with the backcoat layer comprising at least one type of lubricant; with a surface lubricant index as measured on a surface of the magnetic layer ranging from 1.00 to 4.00; and with a state of a presence of indentations on the surface of the magnetic layer satisfying condition 1 and condition 2: condition 1: a number of indentations greater than or equal to 5 nm and less than 10 nm in depth of 5 to 1,000 per 350 μm×260 μm area; and condition 2: a number of indentations greater than or equal to 10 nm in depth of less than or equal to 100 per 350 μm×260 μm area.
Abstract:
An aspect of the present invention relates to a method of manufacturing magnetic particles, which comprises: adding a compound to a water-based magnetic liquid, wherein the water-based magnetic liquid comprises magnetic particles dispersed in an acidic water-based solvent, and the compound is selected from the group consisting of amine compounds, aromatic compounds, and aliphatic compounds having one or more monovalent phosphorus polar groups denoted by: wherein m1 denotes 0 or 1, m2 denotes 1 or 2, and M denotes a hydrogen atom or an alkali metal atom; and then collecting the magnetic particles from the water-based magnetic liquid to obtain the magnetic particles the surfaces of which have been modified by being coated with the compound.
Abstract:
The magnetic recording medium includes a non-magnetic support; a non-magnetic layer including a non-magnetic powder and a binding agent on the non-magnetic support; and a magnetic layer including a ferromagnetic powder, a binding agent, and a non-magnetic powder on the non-magnetic layer, in which a skewness Rsk obtained using an atomic force microscope in a measurement region of a surface of the magnetic layer having a size of 5 μm×5 μm is greater than 0, a maximum peak height Rmax is equal to or smaller than 30.0 nm, and the number of projections having a height equal to or greater than 10 nm is equal to or greater than 10, and a magnetic recording and reproducing device including: this magnetic recording medium; and a magnetic head.
Abstract:
The magnetic recording medium has a magnetic layer containing multiple nonmagnetic particles having a ratio, major axis length/minor axis length, of less than or equal to 1.5, the multiple nonmagnetic particles are present in the magnetic layer in a state where, when the depth to which each of the multiple nonmagnetic particles is embedded in the magnetic layer in observation of a sectional image picked up by SEM is denoted as b and the thickness of the magnetic layer as t, the average value of the ratio of b/t is less than or equal to 0.9, and the number of protrusions 5 nm or greater in height is 800 or greater and the number of protrusions 20 nm or greater in height is 20 or less as measured by AFM per an area 40 μm×40 μm on the magnetic layer side surface of the magnetic recording medium.
Abstract:
An aspect of the present invention relates to a method of manufacturing hexagonal ferrite magnetic powder. The method of manufacturing hexagonal ferrite magnetic powder comprises wet processing hexagonal ferrite magnetic particles obtained following acid treatment in a water-based solvent to prepare an aqueous magnetic liquid satisfying relation (1) relative to an isoelectric point of the hexagonal ferrite magnetic particles: pH0−pH*≧2.5, wherein, pH0 denotes the isoelectric point of the hexagonal ferrite magnetic particles and pH* denotes a pH of the aqueous magnetic liquid, which is a value of equal to or greater than 2.0, adding a surface-modifying agent comprising an alkyl group and a functional group that becomes an anionic group in the aqueous magnetic liquid to the aqueous magnetic liquid to subject the hexagonal ferrite magnetic particles to a surface-modifying treatment, and removing the water-based solvent following the surface-modifying treatment to obtain hexagonal ferrite magnetic particles.
Abstract:
The magnetic recording medium includes: a non-magnetic support; a magnetic layer containing a ferromagnetic powder; and a non-magnetic layer containing a non-magnetic powder between the non-magnetic support and the magnetic layer, in which a total chlorine content of the magnetic layer and the non-magnetic layer is 30.0 mg/m2 or less as a value per unit area, and a total iron content of the magnetic layer and the non-magnetic layer is 300.0 mg/m2 or less as a value per unit area.
Abstract:
The magnetic recording medium includes a non-magnetic support; a non-magnetic layer which contains a non-magnetic powder and is provided on the non-magnetic support; and a magnetic layer which contains a ferromagnetic powder and is provided on the non-magnetic layer, in which a thickness of the non-magnetic layer is less than 0.7 μm, and an average 5-point peak height Rpm is 30 nm or lower and the number of projections having a height of 5 nm or higher is 5,000 or more, as obtained by using an atomic force microscope in a measurement region of 90 μm square on a surface of the magnetic layer.