Abstract:
The radiation-irradiation device includes: a radiation generating unit that generates radiation; a collimator unit that controls an irradiation range to be irradiated with the radiation generated by the radiation generating unit; and an interval ensuring unit that includes a contact member being in contact with a subject to be irradiated with the radiation in a case in which a distance between the radiation generating unit and the subject is shorter than a preset distance, and ensures an interval between the radiation generating unit and the subject. The interval ensuring unit is detachably mounted on the collimator unit and is capable of being mounted at different rotational positions about an axis, which passes through a center of a diaphragm of the collimator unit and extends in the direction of an optical axis of the radiation, as a central axis.
Abstract:
It is possible to reliably avoid a problem that radiation irradiation does not stop even when an accumulated radiation dose reaches a target radiation dose. An AEC unit starts monitoring an integrated value of a radiation dose detection signal from a detection pixel and an output of an irradiation continuation signal at the same time, and continuously transmits the irradiation continuation signal in a predetermined period while the integrated value does not reach a threshold value. When the integrated value reaches the threshold value, the output of the irradiation continuation signal is stopped. The irradiation continuation signal is transmitted to an irradiation signal I/F of a radiation source control device through an irradiation signal I/F by wireless. The radiation source control device stops X-ray irradiation by an X-ray source when the irradiation signal I/F does not receive the irradiation continuation signal.
Abstract:
A pre-imaging control unit of a mammography apparatus selects one pre-imaging focus from plural focuses of a radiation source according to selection conditions which are preset in order to prevent the concentration of load on one of the focuses. Pre-imaging for setting the irradiation conditions of radiation in tomosynthesis imaging is performed using the selected pre-imaging focus. For example, the selection conditions indicate that the pre-imaging focus is changed in each pre-imaging operation and the focus of a radiation tube adjacent to the radiation tube whose focus has been used in the previous pre-imaging is selected as the pre-imaging focus.
Abstract:
A radiation-irradiation system includes a radiation generating device that includes an exposure switch unit and a display device that includes a touch panel; the display device is adapted to be detachably mounted on the radiation generating device and displays an exposure switch mark on the touch panel; and an emission control unit validly receives only an irradiation instruction for radiation of the exposure switch unit in a case in which the display device is installed on the radiation generating device, and validly receives only an irradiation instruction for radiation of the exposure switch mark in the case of a state in which the display device is separated from the radiation generating device.
Abstract:
A radiation signal processing device including: a reception section that receives as a digital signal a signal representing a detection result from a radiation imaging device that captures an image according to irradiated radiation, and that detects a radiation irradiation amount and outputs the signal representing the detection result; and a conversion section that converts the digital signal representing the detection result received by the reception section into an analog signal recognizable by a radiation irradiation device that irradiates radiation onto the radiation imaging device and stops radiation irradiation in cases in which radiation has reached a specific irradiation amount.
Abstract:
It is possible to reliably avoid a problem that radiation irradiation does not stop even when an accumulated radiation dose reaches a target radiation dose. An AEC unit starts monitoring an integrated value of a radiation dose detection signal from a detection pixel and an output of an irradiation continuation signal at the same time, and continuously transmits the irradiation continuation signal in a predetermined period while the integrated value does not reach a threshold value. When the integrated value reaches the threshold value, the output of the irradiation continuation signal is stopped. The irradiation continuation signal is transmitted to an irradiation signal I/F of a radiation source control device through an irradiation signal I/F by wireless. The radiation source control device stops X-ray irradiation by an X-ray source when the irradiation signal I/F does not receive the irradiation continuation signal.
Abstract:
A radiation source of a mammography apparatus includes plural first radiation tubes and one second radiation tube. The first radiation tubes are used for tomosynthesis imaging. In contrast, the second radiation tube is used for pre-imaging which is performed before the tomosynthesis imaging in order to set the irradiation conditions of radiation in the tomosynthesis imaging. The first radiation tubes are provided at plural positions where the focuses of the radiation are set so as to be arranged in a linear shape or an arc shape at equal intervals. The second radiation tube is provided at a position that is offset from the plural positions where the first radiation tubes are provided to a rear side which is a side opposite to the irradiation side of the radiation.
Abstract:
A radiation irradiating apparatus includes a radiation generator that generates radiation and a switch that controls emission of the radiation from the radiation generator. The radiation generator and the switch are constituted by separate housings. The radiation generator and the switch are attachable and detachable to and from each other via a surface of a portion of each of the housings thereof.
Abstract:
The radiation-irradiation device includes: a radiation generating unit that generates radiation; a collimator unit that controls an irradiation range to be irradiated with the radiation generated by the radiation generating unit; and an interval ensuring unit that includes a contact member being in contact with a subject to be irradiated with the radiation in a case in which a distance between the radiation generating unit and the subject is shorter than a preset distance, and ensures an interval between the radiation generating unit and the subject. The interval ensuring unit is detachably mounted on the collimator unit and is capable of being mounted at different rotational positions about an axis, which passes through a center of a diaphragm of the collimator unit and extends in the direction of an optical axis of the radiation, as a central axis.