Abstract:
An electronic book reader includes a touchscreen display device disposed on a front surface of a housing. A storage medium stores image sequence information of plural images of a predetermined sequence. A contact surface portion is disposed on a side surface of the housing. A touch sensor detects contact with the contact surface portion. There is a CPU for display control of displaying the image sequence information on the touchscreen display device. An information processing device is connected between the storage medium and the CPU, for processing the image sequence information according to contact information from the touch sensor. The contact information is information of a rubbing movement in contact with the contact surface portion. The information processing device processes the image sequence information for forward or backward page turning according to a direction of the rubbing movement.
Abstract:
A radiography apparatus includes a radiation emitting device that irradiates a subject with radiation, a camera that captures an image of the subject to acquire a captured image of the subject, and a radiation detector that detects the radiation transmitted through the subject and generates a radiographic image of the subject. The driving state of at least one of the radiation emitting device or the radiation detector is controlled on the basis of whether the radiation detector is included in the captured image.
Abstract:
When an image is touched on a touch screen, the image is displayed as if a touched side of the image is pressed down and an opposite side of the touched side is lifted up. Priority levels of peripheral portions of the image are set in accordance with up and down of the image. Rendering priority between images to be overlapped is determined in accordance with a dominant-subordinate relationship between the priority levels of the peripheral portions of the respective images to be in contact. One of the images is displayed in an overlapped portion of the images based on the rendering priority.
Abstract:
Provided are a radiation emitting device forming a radiography apparatus, a method for controlling the radiation emitting device, and a program which can reduce power consumption. A radiation emitting device includes a radiation source, a collimator that sets a radiation field region, imaging unit for capturing an image of an imaging target, a display unit that displays the image captured by the imaging unit, an exposure switch, and a control unit that issues a collimator driving command to direct the collimator to set the radiation field region determined from the captured image to the collimator in a case in which the exposure switch is operated.
Abstract:
A radiation irradiation apparatus includes a radiation source that irradiates, with radiation, a subject to be examined, a camera that obtains a photographic image of the subject to be examined by performing photography on the subject to be examined, a monitor that displays the photographic image, a housing that houses the radiation source, the camera and the monitor with a display direction of the photographic image directed in a second direction opposite to a first direction that is an irradiation direction of the radiation and a photography direction of the photographic image, and plural grasp units that project in directions different from the first and second directions and are attached to positions of the housing facing each other.