Abstract:
A mechanical splice unit of the invention includes: a mechanical splice having an optical fiber guide groove that is formed at matching surfaces of both a base and a lid in a two-part-divided structure, the mechanical splice being capable of grasping a first optical fiber at one end side of the lid; and an optical fiber splice auxiliary tool used for splice of the first optical fiber that is grasped by the mechanical splice, wherein the optical fiber splice auxiliary tool includes: a mechanical splice grasping portion that holds the mechanical splice; and a guided portion that is slidable along a guide portion formed at a splicing tool to which a second optical fiber to be spliced to the first optical fiber is fixed.
Abstract:
A coating removal tool used for an optical fiber includes: a base; and a pair of arm members extending in one direction from the base. Also, the arm members, each of which comprises an elastically deformable deformation portion on a base side, and an operation portion which is closer to a tip end side than the deformation portion, contact portions in a wedge shape are provided on the inner sides of operation portions, respectively, the inner sides opposing to each other so that tip edges of contact portions oppose to each other, and grip portions are provided outside the operation portions, respectively, and a coating of an optical fiber is configured to be removed by pulling out the optical fiber in a state where the tip edges of the contact portions are brought into contact with the optical fiber disposed along an extending direction of the arm members.
Abstract:
An optical fiber cable having an optical connector, includes: an optical connector assembled on a tip portion of an optical fiber cable, including a ferrule in which an optical fiber protruding from a terminal of the optical fiber cable is inserted and fixed; and a reinforced portion formed by heating and shrinking a heat-shrinkable tube and by solidifying a hot-melt adhesive of an inner portion of the heat-shrinkable tube after melting the hot-melt adhesive so as to integrate a rear end portion of the ferrule, the tip portion of the optical fiber cable which is disposed so as to be separated in a rear side of the ferrule, and the heat-shrinkable tube which accommodates the rear end portion of the ferrule and the tip portion of the optical fiber cable and in which the hot-melt adhesive is disposed in the inner portion of the heat-shrinkable tube.
Abstract:
An optical fiber connector includes a ferrule, an inserted optical fiber, an external optical fiber, and a pair of reinforcing members that pinches and reinforces a fusion-spliced portion of the other end portion of the inserted optical fiber and the front end portion of the external optical fiber. The reinforcing members include adhesion layer on the inner surface thereof which comes in contact with the other end portion of the inserted optical fiber and the front end portion of the external optical fiber. The adhesion layer is depressed at the position where the inserted optical fiber and the external optical fiber come in contact with each other so as to closely adhere to the outer circumferential surfaces of the optical fibers in the fusion-spliced portion.
Abstract:
A method of splicing an optical fiber of the invention splices a first optical fiber cable and an optical fiber in a splicing box, the first optical fiber cable is a drop cable or an indoor cable, the optical fiber is drawn from a second optical fiber cable, the method splices a terminal of the first optical fiber cable and the optical fiber. The method includes: sliding a unit base holding an extended-optical-fiber-attached splice along a rail in a direction in which the unit base approaches a grasper; thereby inserting an inserted optical fiber grasped by the grasper between halved elements of a mechanical splice; and splicing the inserted optical fiber and an extended optical fiber by butt-jointing an end of the inserted optical fiber to the extended optical fiber.
Abstract:
An optical fiber splicer includes a fiber fixing portion, a first optical fiber fixed to the fiber fixing portion, a clamp portion which is capable of holding and fixing an extending portion extended from the fiber fixing portion of the first optical fiber and a tip portion of a second optical fiber optically connected to the extending portion of the first optical fiber between a base member and a pressing member being openable and closable with respect to the base member, and a solid index matching material which is attached to a tip surface of the extending portion of the first optical fiber and is interposed between the first optical fiber and the second optical fiber.
Abstract:
A method of manufacturing an optical connector according to the invention includes: holding a first optical fiber by a pair of holding members at a position apart from an end face of a second end and through both sides thereof in a radial direction, the first optical fiber being provided with a solid refractive index-matching material layer, the refractive index-matching material layer being formed on the end face of the second end on an opposite side of an end face of a first end exposed to a front end of a ferrule; and inserting the first optical fiber into a fiber hole of the ferrule through the first end.
Abstract:
An optical connector comprises a housing, a regulating portion which is protrudes toward an inner surface of the housing, a ferrule which is secured to an optical fiber and which is accommodated inside the housing so as to be movable. The ferrule includes a base portion and a thinned portion that has a thickness smaller than that of the base portion. If the ferrule moves forward in the butt-connection direction, the regulating portion and the base portion approach each other, so that the regulating portion regulates the movement of the ferrule in the thickness direction. If the ferrule moves backward in the butt-connection direction, the ferrule reaches a position where the thinned portion faces the regulating portion, so that the movement of the ferrule in the thickness direction is not regulated by the regulating portion.
Abstract:
An optical fiber splicing unit includes: a mechanical splice which aligns optical fibers and puts the optical fibers between half-split elements to splice the optical fibers to each other; a splice holder portion which holds the mechanical splice; fixing member guide portions which respectively guide anchoring fixation members that are respectively fixed to the optical fibers at two sides of the held mechanical splice; anchoring portions which respectively anchor the anchoring fixation members, the anchoring fixation members being respectively guided by the fixing member guide portions and advancing; and a first spacer which abuts one anchoring fixation member and is disposed to be retracted to restrict the advancement of said one anchoring fixation member, said one anchoring fixation member being guided by one fixing member guide portion and advancing.
Abstract:
An optical fiber connector of the present invention includes: a ferrule; an inserted optical fiber of which one end portion is fixed to the ferrule and of which the other end portion protrudes from the ferrule; an external optical fiber of which a front end portion is fusion-spliced to the other end portion of the inserted optical fiber; and one or more reinforcing members configured to reinforce the fusion-spliced portion of the other end portion of the inserted optical fiber and the front end portion of the external optical fiber, wherein the ferrule comprises a lens located on an extension line of the inserted optical fiber.