ELECTROCHEMICAL MIRROR SYSTEM AND METHOD
    1.
    发明申请

    公开(公告)号:US20200026138A1

    公开(公告)日:2020-01-23

    申请号:US16122312

    申请日:2018-09-05

    Abstract: A system and method of operating an electrochemical mirror for reversibly controlling the propagation of electromagnetic radiation. The mirror preferably includes a first electrode transmissive substrate which is substantially transparent to the electromagnetic radiation, a second electrode, and an electrolyte containing metal ions between the pair of electrodes. A first cathodic potential is applied across the electrodes to cause the metal ions from the electrolyte to electrodeposit a mirror film on the first electrode transmissive substrate. A second anodic potential is applied across the electrodes to oxidize and strip the metallic mirror film from the first electrode transmissive electrode. After a plurality of deposition and stripping cycles, a cleaning cycle is initiated to remove undissolved reflective material on the first electrode preferably by applying a third potential across the first and second electrodes which is increased to a fourth potential and then decreased back to the third potential.

    Sequenced pulse reverse waveform surface finishing of additively manufactured parts

    公开(公告)号:US11702759B2

    公开(公告)日:2023-07-18

    申请号:US17399148

    申请日:2021-08-11

    Abstract: A method of and system for surface finishing an additive manufactured part. A part having a surface roughness with macroasperities is placed in a chamber with an electrolyte and an electrode. A pulse/pulse reverse power supply is connected to the part rendering it anodic and connected to the electrode rendering it cathodic. The power supply is operated to decrease the surface roughness of the part by applying a first series of waveforms including at least two waveforms where a diffusion layer is maintained at a thickness to produce a macroprofile regime relative to the macroasperities, the first series of waveforms having anodic voltages applied for anodic time periods before cathodic voltages applied for cathodic time periods to effect part surface smoothing to a first surface roughness with minimal material removal and applying a final waveform where the diffusion layer represents a microprofile regime, the final waveform having a final anodic voltage applied for a final anodic time period before a final cathodic voltage applied for a final cathodic time period to effect part surface smoothing to a final surface roughness with minimal material removal.

    SEQUENCED PULSE REVERSE WAVEFORM SURFACE FINISHING OF ADDITIVELY MANUFACTURED PARTS

    公开(公告)号:US20220002895A1

    公开(公告)日:2022-01-06

    申请号:US17399148

    申请日:2021-08-11

    Abstract: A method of and system for surface finishing an additive manufactured pint. A part having a surface roughness with macroasperities is placed in a chamber with an electrolyte and an electrode. A pulse/pulse reverse power supply is connected to the part rendering it anodic and connected to the electrode rendering it cathodic. The power supply is operated to decrease the surface roughness of the part by applying a first series of waveforms including at least two waveforms where a diffusion layer is maintained at a thickness to produce a macroprofile regime relative to the macroasperities, the first series of waveforms having anodic voltages applied for anodic time periods before cathodic voltages applied for cathodic time periods to effect part surface smoothing to a first surface roughness with minimal material removal and applying a final waveform where the diffusion layer represents a microprofile regime, the final waveform having a final anodic voltage applied for a final anodic time period before a final cathodic voltage applied for a final cathodic time period to effect part surface smoothing to a final surface roughness with minimal material removal.

    Sequenced pulse reverse waveform surface finishing of additively manufactured parts

    公开(公告)号:US11118283B2

    公开(公告)日:2021-09-14

    申请号:US16774232

    申请日:2020-01-28

    Abstract: A method of and system for surface finishing an additive manufactured part. A part having a surface roughness with macroasperities is placed in a chamber with an electrolyte and an electrode. A pulse/pulse reverse power supply is connected to the part rendering it anodic and connected to the electrode rendering it cathodic. The power supply is operated to decrease the surface roughness of the part by applying a first series of waveforms including at least two waveforms where a diffusion layer is maintained at a thickness to produce a macroprofile regime relative to the macroasperities, the first series of waveforms having anodic voltages applied for anodic time periods before cathodic voltages applied for cathodic time periods to effect part surface smoothing to a first surface roughness with minimal material removal and applying a final waveform where the diffusion layer represents a microprofile regime, the final waveform having a final anodic voltage applied for a final anodic time period before a final cathodic voltage applied for a final cathodic time period to effect part surface smoothing to a final surface roughness with minimal material removal.

    SEQUENCED PULSE REVERSE WAVEFORM SURFACE FINISHING OF ADDITIVELY MANUFACTURED PARTS

    公开(公告)号:US20200318253A1

    公开(公告)日:2020-10-08

    申请号:US16774232

    申请日:2020-01-28

    Abstract: A method of and system for surface finishing an additive manufactured part. A part having a surface roughness with macroasperities is placed in a chamber with an electrolyte and an electrode. A pulse/pulse reverse power supply is connected to the part rendering it anodic and connected to the electrode rendering it cathodic. The power supply is operated to decrease the surface roughness of the part by applying a first series of waveforms including at least two waveforms where a diffusion layer is maintained at a thickness to produce a macroprofile regime relative to the macroasperities, the first series of waveforms having anodic voltages applied for anodic time periods before cathodic voltages applied for cathodic time periods to effect part surface smoothing to a first surface roughness with minimal material removal and applying a final waveform where the diffusion layer represents a microprofile regime, the final waveform having a final anodic voltage applied for a final anodic time period before a final cathodic voltage applied for a final cathodic time period to effect part surface smoothing to a final surface roughness with minimal material removal.

    Electrochemical mirror system and method

    公开(公告)号:US10684522B2

    公开(公告)日:2020-06-16

    申请号:US16122312

    申请日:2018-09-05

    Abstract: A system and method of operating an electrochemical mirror for reversibly controlling the propagation of electromagnetic radiation. The mirror preferably includes a first electrode transmissive substrate which is substantially transparent to the electromagnetic radiation, a second electrode, and an electrolyte containing metal ions between the pair of electrodes. A first cathodic potential is applied across the electrodes to cause the metal ions from the electrolyte to electrodeposit a mirror film on the first electrode transmissive substrate. A second anodic potential is applied across the electrodes to oxidize and strip the metallic mirror film from the first electrode transmissive electrode. After a plurality of deposition and stripping cycles, a cleaning cycle is initiated to remove undissolved reflective material on the first electrode preferably by applying a third potential across the first and second electrodes which is increased to a fourth potential and then decreased back to the third potential.

Patent Agency Ranking