ELECTROCHEMICAL METHOD FOR FABRICATION OF HIGH-PURITY, HIGH-CONDUCTIVITY CORRUGATED WAVEGUIDES

    公开(公告)号:US20240030583A1

    公开(公告)日:2024-01-25

    申请号:US18353265

    申请日:2023-07-17

    CPC classification number: H01P11/002 C25D1/02 C25D21/12

    Abstract: A method of manufacturing a corrugated copper microwave waveguide comprising placing a mandrel with external corrugations in an electrolyte bath substantially devoid of brighteners, accelerators, or levelers and including copper ions, sulfuric acid, chloride, and polyethylene glycol. The mandrel is placed proximate a copper anode in the bath. One or more waveforms are applied to the mandrel and anode to control electrodeposition distribution of copper to the mandrel rather than controlling the electrolyte bath chemistry. The mandrel and the resulting electroformed waveguide are removed from the electrolyte bath and the mandrel is excised (e.g., dissolved) resulting in a microwave waveguide with internal corrugations. Substantially devoid of additives (brighteners, accelerators, and/or levelers) generally means not having to repeatedly meter in additives during the electroforming process.

    Sequenced pulse reverse waveform surface finishing of additively manufactured parts

    公开(公告)号:US11702759B2

    公开(公告)日:2023-07-18

    申请号:US17399148

    申请日:2021-08-11

    Abstract: A method of and system for surface finishing an additive manufactured part. A part having a surface roughness with macroasperities is placed in a chamber with an electrolyte and an electrode. A pulse/pulse reverse power supply is connected to the part rendering it anodic and connected to the electrode rendering it cathodic. The power supply is operated to decrease the surface roughness of the part by applying a first series of waveforms including at least two waveforms where a diffusion layer is maintained at a thickness to produce a macroprofile regime relative to the macroasperities, the first series of waveforms having anodic voltages applied for anodic time periods before cathodic voltages applied for cathodic time periods to effect part surface smoothing to a first surface roughness with minimal material removal and applying a final waveform where the diffusion layer represents a microprofile regime, the final waveform having a final anodic voltage applied for a final anodic time period before a final cathodic voltage applied for a final cathodic time period to effect part surface smoothing to a final surface roughness with minimal material removal.

    SEQUENCED PULSE REVERSE WAVEFORM SURFACE FINISHING OF ADDITIVELY MANUFACTURED PARTS

    公开(公告)号:US20220002895A1

    公开(公告)日:2022-01-06

    申请号:US17399148

    申请日:2021-08-11

    Abstract: A method of and system for surface finishing an additive manufactured pint. A part having a surface roughness with macroasperities is placed in a chamber with an electrolyte and an electrode. A pulse/pulse reverse power supply is connected to the part rendering it anodic and connected to the electrode rendering it cathodic. The power supply is operated to decrease the surface roughness of the part by applying a first series of waveforms including at least two waveforms where a diffusion layer is maintained at a thickness to produce a macroprofile regime relative to the macroasperities, the first series of waveforms having anodic voltages applied for anodic time periods before cathodic voltages applied for cathodic time periods to effect part surface smoothing to a first surface roughness with minimal material removal and applying a final waveform where the diffusion layer represents a microprofile regime, the final waveform having a final anodic voltage applied for a final anodic time period before a final cathodic voltage applied for a final cathodic time period to effect part surface smoothing to a final surface roughness with minimal material removal.

    Sequenced pulse reverse waveform surface finishing of additively manufactured parts

    公开(公告)号:US11118283B2

    公开(公告)日:2021-09-14

    申请号:US16774232

    申请日:2020-01-28

    Abstract: A method of and system for surface finishing an additive manufactured part. A part having a surface roughness with macroasperities is placed in a chamber with an electrolyte and an electrode. A pulse/pulse reverse power supply is connected to the part rendering it anodic and connected to the electrode rendering it cathodic. The power supply is operated to decrease the surface roughness of the part by applying a first series of waveforms including at least two waveforms where a diffusion layer is maintained at a thickness to produce a macroprofile regime relative to the macroasperities, the first series of waveforms having anodic voltages applied for anodic time periods before cathodic voltages applied for cathodic time periods to effect part surface smoothing to a first surface roughness with minimal material removal and applying a final waveform where the diffusion layer represents a microprofile regime, the final waveform having a final anodic voltage applied for a final anodic time period before a final cathodic voltage applied for a final cathodic time period to effect part surface smoothing to a final surface roughness with minimal material removal.

Patent Agency Ranking