Abstract:
A satellite-based positioning receiver is provided that is configured to combine non-concurrent sets of pseudoranges all taken at a common location to determine at least a 2D position of the common location.
Abstract:
The use of multiple GPS sensors provides the conceptual framework for novel techniques for reducing the minimum signal strength required by a GPS assistance system to acquire and accurately track GPS satellites at or near the horizon. A strong signal attenuation system for synthesizing GPS satellite-specific I/F signals, enabling more efficient and effective acquisition of GPS satellites, is disclosed, comprising N+1 reference GPS sensors, each with an omni-directional antenna and front end, for down converting composite GPS satellite signals, and strong signal suppression (SSS) means for synthesizing, from the I/F signals produced by the N+1 reference GPS sensors, a set of one or more I/F signals (corresponding to a set of designated satellites), each with at least N of the strongest potentially-interfering satellite signals suppressed.
Abstract:
A system for measuring the pseudo range from a target GPS sensor to a designated navigational satellite, for use in a satellite positioning system (SPS) is comprised of multiple GPS sensors for receiving and recording portions of the signals transmitted by designated navigational satellites, the recordings referred to as datagrams; and means for transmitting the datagrams to a datagram processing facility wherein the pseudo range from the target GPS sensor to the designated navigational satellite is derived. The datagram processing facility for deriving the pseudo range is further comprised of a pseudo range engine for deriving a pseudo range from a datagram originating with said target GPS sensor, the location of which is to be determined, the derivation accomplished with the aid of a perfect reference; a perfect reference engine for generating a perfect reference from one or more satellite-specific datagrams: and a strong signal suppression engine for synthesizing satellite-specific datagrams from I/F signals recorded by reference GPS sensors designated for the express purpose of perfect reference generation. The perfect reference reduces the minimum signal strength required to acquire and accurately track GPS satellites at or near the horizon.
Abstract:
A technique for processing received signals in multiple-antenna systems. Received signals from the different antennas may be amplified by a Low Noise Amplifier (LNA) and time-multiplexed by a switch to form a single analog signal. The time-multiplexed analog signal is down-converted and processed using a single RF chain for each signal component. This may result in an N-fold decrease in hardware in multiple antenna receiver systems.
Abstract:
A technique for PAR reduction involves producing an optimized clipping pulse. The optimized clipping pulse may be designed to meet certain requirements, such as a spectral mask target or an EVM target, when applied to a signal.
Abstract:
A technique for processing received signals in multiple-antenna systems. Received signals from the different antennas may be amplified by a Low Noise Amplifier (LNA) and time-multiplexed by a switch to form a single analog signal. The time-multiplexed analog signal is down-converted and processed using a single RF chain for each signal component. This may result in an N-fold decrease in hardware in multiple antenna receiver systems.
Abstract:
A system for measuring the pseudo range from a first GPS sensor to a designated navigational satellite, for use in a satellite positioning system (SPS) is comprised of first and second GPS sensors for receiving and recording first and second portions of the signal transmitted by the designated navigational satellite, the recordings referred to as the first and second datagrams. The first and second datagrams are transmitted to a datagram processing facility wherein the pseudo range from the first GPS sensor to the designated navigational satellite is extracted. The datagram processing facility for extracting the pseudo range is further comprised of a pseudo range engine for extracting a pseudo range from a datagram received by the first GPS sensor. The location of which is to be determined, the extraction accomplished with the aid of a perfect reference; and a perfect reference engine for generating a perfect reference from a datagram originating with a second GPS sensor designated for the express purpose of perfect reference generation.
Abstract:
A system for measuring the pseudo range from a first GPS sensor to a designated navigational satellite, for use in a satellite positioning system (SPS) is comprised of first and second GPS sensors for receiving and recording first and second portions of the signal transmitted by the designated navigational satellite, the recordings referred to as the first and second datagrams; and means for transmitting the first and second datagrams to a datagram processing facility wherein the pseudo range from the first GPS sensor to the designated navigational satellite is extracted. The datagram processing facility for extracting the pseudo range is further comprised of a pseudo range engine for extracting a pseudo range from a datagram originating with said first GPS sensor, the location of which is to be determined, the extraction accomplished with the aid of a perfect reference; and a perfect reference engine for generating a perfect reference from a datagram originating with a second GPS sensor designated for the express purpose of perfect reference generation. The perfect reference reduces the minimum number of satellites required to fix a position from four to three, and further enables the pseudo range engine to recombine multi-path GPS signals.
Abstract:
A method for estimating the location of a beacon from an ensemble of measurements associated with said beacon, where, contained in each measurement, are GPS data from which surfaces of location may be extracted, together with the ID's of beacons detectable at the point of measurement, is disclosed. The method comprises extracting the canonical set of surfaces of location implicit in each of the associated measurements, and determining the estimate of the location of the beacon as the point for which a weighted sum of the squares of the distances to each of the surfaces so extracted is minimized. A system for the compilation of a database of beacon locations from measurements containing a time-stamped recording of the composite GPS signal (which recording is referred to as a datagram), together with the ID's and associated signal strengths of beacons detectable at the point of measurement, is also disclosed. The system comprises GPS signal processing means for extracting, from each time-stamped datagram, the canonic set of surfaces of location, and beacon location estimation means for estimating the location of a beacon from an ensemble of surfaces of location associated with said beacon.
Abstract:
A method and a device are disclosed including a PLC node having a synchronizer, a modem with a transceiver, and a computing device coupled with a power line for power line data communications. In various embodiments, a coordinator or Data Concentrator Unit (DCU) coordinates the communication of PLC nodes. The PLC nodes are configured to detect a zero crossing of the power line wave form and transmit or receive data within time slots defined with respect to the detected zero crossing. In other embodiments, the time slots may be synchronized using a frame sync signal, an external signal, or polling. In various embodiments, the time slots may be random access or assigned. In some embodiments, the modem and/or node may be placed in a sleep mode when not communicating to reduce power consumption and be awaken when an allocated time slot is approaching.