Abstract:
FIG. 1 is a first embodiment of a display screen or portion thereof with a graphical user interface showing our new design. FIG. 2 is a second embodiment thereof. FIG. 3 is a third embodiment thereof. FIG. 4 is a fourth embodiment thereof. FIG. 5 is a fifth embodiment thereof; and, FIG. 6 is a sixth embodiment thereof. The outer perimeter in broken lines that surrounds the graphical user interface in which the design is embodied represents a display screen or portion thereof and forms no part of the claimed design. Other broken lines within the graphical user interface illustrate aspects of the graphical user interface that form no part of the claimed design.
Abstract:
Embodiments are directed to a dual end optical cleaning device. The dual end optical cleaning device includes a housing and first and second optical cleaning tools that are held in opposing directions in the housing. That is, the housing holds the first and second optical cleaning tools such that ends of the first and second optical cleaning tools are facing opposite directions of each other. The ends of the first and second optical cleaning tools are configured to clean optical fibers being held by different end pieces. In at least one embodiment, an end of the first optical cleaning tool is configured to couple to a connector holding an optical fiber, such as patch cord, while the second end of the second optical cleaning tool is configured to be inserted into a port of an electronic device or system, such as a patch panel port.
Abstract:
A test instrument provides suggested next operational step function to provide a user with assistance during testing. A display is provided to show the amount of a project that has been completed, for example as a percentage completed value. Individual test results may be saved to a ‘fix later’ list, which may be later accessed to re-test items that may not have passed on initial testing.
Abstract:
A test instrument provides suggested next operational step function to provide a user with assistance during testing. A display is provided to show the amount of a project that has been completed, for example as a percentage completed value. Individual test results may be saved to a “fix later” list, which may be later accessed to re-test items that may not have passed on initial testing.
Abstract:
FIG. 1 is a first embodiment of a display screen or portion thereof with a graphical user interface showing our new design. FIG. 2 is a second embodiment thereof. FIG. 3 is a third embodiment thereof. FIG. 4 is a fourth embodiment thereof. FIG. 5 is a fifth embodiment thereof; and, FIG. 6 is a sixth embodiment thereof. The outer perimeter in broken lines that surrounds the graphical user interface in which the design is embodied represents a display screen or portion thereof and forms no part of the claimed design. The background of the graphical user interface is monochrome. Other broken lines within the graphical user interface illustrate aspects of the graphical user interface that form no part of the claimed design.
Abstract:
One or more embodiments are directed to optical test instruments, such as fiber optic inspection scopes and optical power meters, for testing optical communication links, such as fiber optic connectors. The optical test instruments include a single test port that is able to operate in two modes of operation. In a first mode of operation, the optical test instrument is configured to provide an image of the endface of a fiber optic connector under test. In a second mode of operation, the optical test instrument is configured to measure power or power loss in an optical fiber under test. In that regard, the fiber optic connector only has to be coupled to a single port of an optical test instrument for a visual inspection of an endface of a fiber optic connector and a power test of the optical fiber under test.
Abstract:
An integrating sphere-equipped optical measurement device and optical connector polarity and type identification and loss measurement are provided. The optical measurement device receives one or more optical signals that respectively emanate from one or more optical fibers of a plurality of optical fibers of an optical fiber cable. The optical measurement device determines one or more respective positions where the one or more optical signals impinged on a sensor. The optical measurement device determines based on the one or more positions, one or more receiving positions of the one or more optical signals, respectively. The optical measurement device determines a polarity of the optical fiber cable based on both the one or more receiving positions and one or more or transmitting positions of the one or more optical signals, respectively.
Abstract:
An integrating sphere-equipped optical measurement device and optical connector polarity and type identification and loss measurement are provided. The optical measurement device receives one or more optical signals that respectively emanate from one or more optical fibers of a plurality of optical fibers of an optical fiber cable. The optical measurement device determines one or more respective positions where the one or more optical signals impinged on a sensor. The optical measurement device determines based on the one or more positions, one or more receiving positions of the one or more optical signals, respectively. The optical measurement device determines a polarity of the optical fiber cable based on both the one or more receiving positions and one or more or transmitting positions of the one or more optical signals, respectively.
Abstract:
An optical testing device is provided. The testing device includes a position sensing detector (PSD) having an optical sensing area that is optically responsive to a first range of wavelengths. The PSD receives a plurality of optical signals having wavelengths within the first range and emitted through a respective plurality of optical fibers and detects a plurality of positions where the optical signals impinged on the optical sensing area for determining array polarity. The PSD receives a plurality of first optical signals having wavelengths within the first range and detects the polarity and a plurality of optical intensities of the first optical signals. The testing device includes a photodetector that is optically responsive to a second range of wavelengths different than the first range. The photodetector receives a plurality of second optical signals within the second range and detects a plurality of optical intensities of the second optical signals.