Abstract:
A low cost and efficient design is used to convert a propane recovery process based on low nitrogen content feed gas to an ethane recovery process based on a high nitrogen feed gas while achieving over 95 mole % ethane recovery while maintaining a 99% propane recovery, and achieved without additional equipment.
Abstract:
A natural gas liquid plant is retrofitted with a bolt-on unit that includes an absorber that is coupled to an existing demethanizer by refrigeration produced at least in part by compression and expansion of the residue gas, wherein ethane recovery can be increased to at least 99% and propane recovery is at least 99%, and where a lower ethane recovery of 96% is required, the bolt-on unit does not require the absorber, which could be optimum solution for revamping an existing facility. Contemplated configurations are especially advantageous to be used as bolt-on upgrades to existing plants.
Abstract:
Acid gas is removed from a high pressure feed gas that contains significant quantities of CO2 and H2S. In especially preferred configurations and methods, feed gas is contacted in an absorber with a lean and an ultra-lean solvent that are formed by flashing rich solvent and stripping a portion of the lean solvent, respectively. Most preferably, the flash vapors and the stripping overhead vapors are recycled to the feed gas/absorber, and the treated feed gas has a CO2 concentration of less than 2 mol % and a H2S concentration of less than 10 ppmv, and more typically less than 4 ppm.
Abstract:
Gas processing plants and methods are contemplated in CO2 is effectively removed to very low levels from a feed gas to an NRU unit by adding a physical solvent unit that uses waste nitrogen produced by the NRU as stripping gas to produce an ultra-lean solvent, which is then used to treat the feed gas to the NRU unit. Most preferably, the physical solvent unit includes a flash unit and stripper column to produce the ultra-lean solvent.
Abstract:
A LNG liquefaction plant includes a propane recovery unit including an inlet for a feed gas, a first outlet for a LPG, and a second outlet for an ethane-rich feed gas, an ethane recovery unit including an inlet coupled to the second outlet for the ethane-rich feed gas, a first outlet for an ethane liquid, and a second outlet for a methane-rich feed gas, and a LNG liquefaction unit including an inlet coupled to the second outlet for the methane-rich feed gas, a refrigerant to cool the methane-rich feed gas, and an outlet for a LNG. The LNG plant may also include a stripper, an absorber, and a separator configured to separate the feed gas into a stripper liquid and an absorber vapor. The stripper liquid can be converted to an overhead stream used as a reflux stream to the absorber.
Abstract:
A low cost and efficient design is used to convert a propane recovery process based on low nitrogen content feed gas to an ethane recovery process based on a high nitrogen feed gas while achieving over 95 mole % ethane recovery while maintaining a 99% propane recovery, and achieved without additional equipment.
Abstract:
Variable N2 content in feed gas ranging from 3 mole % to 50 mole % can be rejected from the process using a feed exchanger that is fluidly coupled with a cold separator and a single fractionation column to produce a nitrogen vent stream and streams that are suitable to be further processed for NGL recovery and LNG production.
Abstract:
Gas processing plants and methods are contemplated in CO2 is effectively removed to very low levels from a feed gas to an NRU unit by adding a physical solvent unit that uses waste nitrogen produced by the NRU as stripping gas to produce an ultra-lean solvent, which is then used to treat the feed gas to the NRU unit. Most preferably, the physical solvent unit includes a flash unit and stripper column to produce the ultra-lean solvent.
Abstract:
Embodiments relate generally to systems and methods for operating a natural gas liquids plant in ethane rejection and in ethane recovery. A natural gas liquid plant may comprise an absorber configured to produce an ethane rich bottom stream and an ethane depleted vapor stream; a stripper fluidly coupled to the absorber configured to, during ethane rejection, fractionate the ethane rich bottom stream from the absorber into an ethane overhead product and a propane plus hydrocarbons product, and configured to, during ethane recovery, fractionate the ethane rich bottom stream into an ethane plus NGL stream and an overhead vapor stream; and an exchanger configured to, during ethane recovery, counter-currently contact the ethane rich bottom stream from the absorber with the ethane depleted vapor stream from the absorber, thereby heating the vapor stream and chilling the ethane rich bottom stream before the ethane rich bottom stream is fed to the stripper.
Abstract:
An LNG plant comprises a cold box and a refrigeration unit fluidly coupled with a plurality of heat exchanger passes in the cold box. The refrigeration unit is configured to provide a first refrigerant stream to a first heat exchanger pass of the plurality of heat exchanger passes at a first pressure, a second refrigerant stream to a second heat exchanger pass at a second pressure, and a third refrigerant stream to a third heat exchanger pass at a third pressure. The second refrigerant stream comprises a first portion of the first refrigerant stream, and the third refrigerant stream comprises a second portion of the first refrigerant stream. The second pressure and the third pressure are both below the first pressure. The cold box is configured to produce LNG from a natural gas feed stream to the cold box using a refrigeration content from the refrigeration unit.