Abstract:
A portable electronic device implements power management to accommodate operation of a projector from the device's power source. The portable device includes a power source, a memory, a user interface, and a processor. The memory stores an image file and associated content metadata. The user interface receives a request to use the projector to perform a projection task, wherein the task includes projecting images from the image file onto a display surface. The processor is operable to: (i) retrieve the content metadata from the memory responsive to the request; (ii) project, based at least on the content metadata, whether the power source has sufficient power remaining for the projector to complete the task; and (iii) if there is not sufficient power remaining, modify parameters associated with the task and/or functionality of the portable device in an attempt to enable the power source to supply sufficient power to the projector.
Abstract:
A method and apparatus for predictive, context-aware, and networked exposure time monitoring. The method may include storing (320), in a memory, personal information including skin phototype and sun protection factor information, obtaining (330) context related information including an activity, a location, and a time of day, and retrieving (340) environmental conditions that affect ultraviolet exposure. The environmental conditions can include weather conditions retrieved from a network. The method can also include predicting (350) ultraviolet exposure time based on the personal information, the context related information, and the environmental conditions and outputting (360) information corresponding to the ultraviolet exposure time.
Abstract:
A projection device (100), and method for operating the projection device is provided herein. During operation a projection device will determine a current context, and then associate the context and the display parameters. The association is stored so that the projection device will operate using the display parameters the next time the context is realized.
Abstract:
A method and system for clustering displays is disclosed. The method includes collecting clustering information of display devices. A profile is generated from the collected clustering information. A list of display configurations for the display devices is created based on the generated profile. A particular display configuration is selected from the created list of display configurations for clustering the displays. A display cluster is formed by clustering the displays of display devices in accordance with the selected display configuration and content is displayed on the display cluster.
Abstract:
A headpiece (101) has at least one pedometer accelerometer (102) integrally disposed with respect to the headpiece (101) and a personal communications device interface (103) operably supported by the headpiece (101). By one approach, the headpiece (201) has an earpiece having at least one audio transducer (204). By another approach, the pedometer accelerometer (402) is disposed substantially dorsally with respect to the user's head (413) when the headpiece (401) is supported by the user's head (413).
Abstract:
A method (300) and apparatus (200) that determines a physiological parameter using a fingerprint sensor on a portable electronic device is disclosed. The method can include capturing (320) a plurality of images corresponding to an area beneath a surface of skin using a fingerprint sensor configured to capture a live scan of a fingerprint pattern from a finger on a touch surface on a portable electronic device. The method can include comparing (330) image characteristics corresponding to at least a first image of the plurality of images with image characteristics corresponding to at least a second image of the plurality of images. The method can include determining (340) a physiological parameter based on comparing the image characteristics.
Abstract:
A method (300) and apparatus (110) that determines blood oxygenation using a mobile communication device is disclosed. The method can include capturing (320) a plurality of images of skin using an array of pixels in a camera on a portable electronic device. The method can include comparing (330) image characteristics corresponding to the plurality of captured images at a first wavelength with image characteristics corresponding to the plurality of captured images at a second wavelength, the second wavelength being substantially distinct from the first wavelength. The method can include determining (340) blood oxygen level based on comparing the image characteristics.
Abstract:
A method (300) and apparatus (110) that determines blood oxygenation using a mobile communication device is disclosed. The method can include capturing (320) a plurality of images of skin using an array of pixels in a camera on a portable electronic device. The method can include comparing (330) image characteristics corresponding to the plurality of captured images at a first wavelength with image characteristics corresponding to the plurality of captured images at a second wavelength, the second wavelength being substantially distinct from the first wavelength. The method can include determining (340) blood oxygen level based on comparing the image characteristics.
Abstract:
An apparatus (400) can receive (101) a plurality of visible light images as correspond to a subject's skin (403) proximal to a blood-transporting capillary (404) and then process (102) that plurality of visible light images to thereby determine a heart rate for the subject. These teachings will accommodate both light-transmissive images and light-reflective images. By one approach, these visible light images can comprise images that are captured by use of a cellular telephone camera (402). The aforementioned processing can occur, in whole or in part, at the cellular telephone or at a remotely located server (408).
Abstract:
A method and apparatus for predictive, context-aware, and networked exposure time monitoring. The method may include storing (320), in a memory, personal information including skin phototype and sun protection factor information, obtaining (330) context related information including an activity, a location, and a time of day, and retrieving (340) environmental conditions that affect ultraviolet exposure. The environmental conditions can include weather conditions retrieved from a network. The method can also include predicting (350) ultraviolet exposure time based on the personal information, the context related information, and the environmental conditions and outputting (360) information corresponding to the ultraviolet exposure time.