摘要:
An enhanced communication bridge includes a context interface that enables the audio bridge to learn information about the type of Voice encoder, device, network connection, location, type of call (business vs. personal), identity and position of the individual, and other information about the context of the communication session itself as well as the context of each person joining the communication session. This context information is used to determine how quality of experience targets for the communication as a whole, as well as how each individual contribution should be uniquely processed to attempt to meet the quality of experience targets. Business factors may influence the decision as to the type of processing to be implemented on each of the signals provided by the participants. Corrective action may also be implemented by the bridge on the client network devices as well in the embodiment. The bridge may be centralized or distributed. A video bridge may be implemented as well.
摘要:
A set of critical nodes or links is identified on the network through which most of the shortest paths on the network occur. Each node compares their distance to end points on the network with a distance between the end points and each of the distinct critical nodes. Where the distance between the end points and the critical nodes is shorter than the distance between the end points and the node, the node is not on the shortest path and does not install forwarding state. Where the distance between the end points and the critical node is larger than or equal to the distance between the end points and the node, the node may be on the shortest path between the pair of end nodes and installs forwarding state. Installation of forwarding state may cause packet duplication, but determining forwarding state is dramatically simplified. The level of duplication may be reduced by selecting a larger number of critical nodes on the network.
摘要:
A set of critical nodes or links is identified on the network through which most of the shortest paths on the network occur. Each node compares their distance to end points on the network with a distance between the end points and each of the distinct critical nodes. Where the distance between the end points and the critical nodes is shorter than the distance between the end points and the node, the node is not on the shortest path and does not install forwarding state. Where the distance between the end points and the critical node is larger than or equal to the distance between the end points and the node, the node may be on the shortest path between the pair of end nodes and installs forwarding state. Installation of forwarding state may cause packet duplication, but determining forwarding state is dramatically simplified.
摘要:
A set of critical nodes or links is identified on the network through which most of the shortest paths on the network occur. Each node compares their distance to end points on the network with a distance between the end points and each of the distinct critical nodes. Where the distance between the end points and the critical nodes is shorter than the distance between the end points and the node, the node is not on the shortest path and does not install forwarding state. Where the distance between the end points and the critical node is larger than or equal to the distance between the end points and the node, the node may be on the shortest path between the pair of end nodes and installs forwarding state. Installation of forwarding state may cause packet duplication, but determining forwarding state is dramatically simplified.
摘要:
A set of critical nodes or links is identified on the network through which most of the shortest paths on the network occur. Each node compares their distance to end points on the network with a distance between the end points and each of the distinct critical nodes. Where the distance between the end points and the critical nodes is shorter than the distance between the end points and the node, the node is not on the shortest path and does not install forwarding state. Where the distance between the end points and the critical node is larger than or equal to the distance between the end points and the node, the node may be on the shortest path between the pair of end nodes and installs forwarding state. Installation of forwarding state may cause packet duplication, but determining forwarding state is dramatically simplified. The level of duplication may be reduced by selecting a larger number of critical nodes on the network.
摘要:
A method of expediting resource negotiation in a modified Session Initiation Protocol (SIP) reduces the number of messages exchanged for resource negotiation, thereby reducing the latencies involved in session setup. The method entails sending an INVITE message having a modified SIP header containing an indication that the originator's terminal seeks a fast session setup. The INVITE message further contains a list of all codecs available at the originator's terminal and how many each type of media component are required. These codecs can be provided in an order of preference. The answerer selects the codecs for the requested media types from the list of available codecs without engaging in a back-and-forth resource negotiation for the codecs. The result is that the session can be set up with fewer messages which provides quicker session setup than in the prior art.
摘要:
A method of expediting resource negotiation in a modified Session Initiation Protocol (SIP) reduces the number of messages exchanged for resource negotiation, thereby reducing the latencies involved in session setup. The method entails sending an INVITE message having a modified SIP header containing an indication that the originator's terminal seeks a fast session setup. The INVITE message further contains a list of all codecs available at the originator's terminal and how many of each type of media component are required. These codecs can be provided in an order of preference. The answerer (the called party in the case of VoIP) selects the codecs for the requested media types from the list of available codecs without engaging in a back-and-forth resource negotiation for the codecs. The result is that the session can be set up with merely 7 messages of which only 5 messages contribute to session setup, which provides quicker session setup than in the prior art.
摘要:
The method of the present invention provides a procedure for testing shared-memory multi-processor (SMMP) performance by formulating and modifying a given memory contention matrix (MCM), which is generated by collecting traces of memory addresses accessed by so-called subcalls in an SMMPCC. A subcall pair contending for at least one shared memory access address enters a "1" at the respective matrix element. For subcall pairs not sharing any memory address a ".O slashed." is entered.