摘要:
A heater chip has a substrate and at least one die, made of silicon, and a bond non-adhesively attaching them. The substrate, thick enough to resist bowing, has ink supply vias from back to front surfaces. The die has ink flow vias from back to front surfaces and circuitry including heater elements adjacent the front surface interspersed with ink flow vias. The at least one die is superimposed on the substrate such that ink supply vias of the substrate align with ink flow vias of the die and portions of substrate front surface and die back surface are aligned, disposed adjacent and facing one another. The bond formed between substrate and die facing surface portions is hermetic and equal in strength to a Si—O bond. A metal through the die connects a conductor on a front of the substrate to a heater element on a front of the die.
摘要:
A heater chip has a substrate and at least one die, made of silicon, and a bond non-adhesively attaching them. The substrate, thick enough to resist bowing, has ink supply vias from back to front surfaces. The die has ink flow vias from back to front surfaces and circuitry including heater elements adjacent the front surface interspersed with ink flow vias. The at least one die is superimposed on the substrate such that ink supply vias of the substrate align with ink flow vias of the die and portions of substrate front surface and die back surface are aligned, disposed adjacent and facing one another. The bond formed between substrate and die facing surface portions is hermetic and equal in strength to a Si—O bond. By separate processing of carrier and device wafers, size and features of substrate and die can be tailored to provide a desired heater chip construction.
摘要:
A heater chip has a substrate and at least one die, made of silicon, and a bond non-adhesively attaching them. The substrate, thick enough to resist bowing, has ink supply vias from back to front surfaces. The die has ink flow vias from back to front surfaces and circuitry including heater elements adjacent the front surface interspersed with ink flow vias. The at least one die is superimposed on the substrate such that ink supply vias of the substrate align with ink flow vias of the die and portions of substrate front surface and die back surface are aligned, disposed adjacent and facing one another. The bond formed between substrate and die facing surface portions is hermetic and equal in strength to a Si—O bond. By separate processing of carrier and device wafers, size and features of substrate and die can be tailored to provide a desired heater chip construction.
摘要:
A heater chip has a substrate and at least one die, made of silicon, and a bond non-adhesively attaching them. The substrate, thick enough to resist bowing, has ink supply vias from back to front surfaces. The die has ink flow vias from back to front surfaces and circuitry including heater elements adjacent the front surface interspersed with ink flow vias. The at least one die is superimposed on the substrate such that ink supply vias of the substrate align with ink flow vias of the die and portions of substrate front surface and die back surface are aligned, disposed adjacent and facing one another. The bond formed between substrate and die facing surface portions is hermetic and equal in strength to a Si—O bond. A metal through the die connects a conductor on a front of the substrate to a heater element on a front of the die.
摘要:
A micro-fluid ejection head assembly and methods for fabricating micro-fluid ejection heads using separately fabricated electrical components. The micro-fluid ejection head has at least one base substrate, at least one fluid ejector actuator substrate attached to the base substrate; and at least a first logic component substrate hermetically sealed to the base substrate. The fluid ejector actuator substrate and the first logic component substrate are in electrical communication with each other.
摘要:
A micro-fluid ejection head assembly and methods for fabricating micro-fluid ejection heads using separately fabricated electrical components. The micro-fluid ejection head has at least one base substrate, at least one fluid ejector actuator substrate attached to the base substrate; and at least a first logic component substrate hermetically sealed to the base substrate. The fluid ejector actuator substrate and the first logic component substrate are in electrical communication with each other.
摘要:
A substantially planar micro-fluid ejection device, where the micro-fluid ejection head is hermetically sealed and bonded to a support material, and a method of bonding a silicon device, such as a micro-fluid ejection head, to a support material.
摘要:
A wafer has a substrate and a photoresist layer thereon with a surface that is planarized by positioning over a starting surface of the photoresist layer a gray-scale mask having a pattern that correlates with a gradient height profile of unevenness present on the starting surface, patterning the photoresist layer using the gray-scale mask to produce the pattern thereof in the photoresist layer which, in effect, produces a profile of evenness in the photoresist layer underlying the gradient height profile of unevenness, and developing the patterned photoresist layer such that only a three-dimensional portion thereof corresponding to the gradient height profile of unevenness located above the profile of evenness is removed which, in effect, leaves behind a resulting surface on the photoresist layer made substantially more even and thus substantially in a planarized condition.
摘要:
A substantially planar micro-fluid ejection device, where the micro-fluid ejection head is hermetically sealed and bonded to a support material, and a method of bonding a silicon device, such as a micro-fluid ejection head, to a support material.
摘要:
A substantially planar micro-fluid ejection device, where the micro-fluid ejection head is hermetically sealed and bonded to a support material, and a method of bonding a silicon device, such as a micro-fluid ejection head, to a support material.