Abstract:
A projection screen that includes a transparent substrate, a plurality of micro-lens structures, a Fresnel lens structure, a light absorption layer, and a diffusive reflection layer is provided. The transparent substrate has a first surface and a second surface opposite to the first surface. The micro-lens structures are located at the first surface of the transparent substrate. The Fresnel lens structure is located at the second surface of the transparent substrate. The light absorption layer includes a light absorption portion. The diffusive reflection layer includes a plurality of dispersive diffusive reflection portions connected to the Fresnel lens structure. The deviation degrees of the diffusive reflection portions with respect to a plurality of optical axes of the corresponding micro-lens structures increase together with an increase in slopes of inclined surfaces of the Fresnel lens structure on the corresponding optical axes. A manufacturing method of the projection screen is also provided.
Abstract:
An optical film has a light incident side and a light emitting side above the light incident side. V shape protrusions disposed side by side are disposed at the light incident side. Collimating units disposed side by side are disposed at the light emitting side. Each of the V shape protrusions and each of the collimating units extend along a predetermined direction. The collimating units are respectively corresponded to the V shape protrusions. Two inclined surfaces of each of the V shape protrusions are respectively a light incident surface and a reflection surface. In each corresponding pair of the V shape protrusion and the collimating unit, a central axis of the collimating unit parallel to the predetermined direction is right above the reflection surface of the V shape protrusion. A backlight module using the optical film is provided to provide a plane light source having high luminance.
Abstract:
A lens module including a guide set, a lens set, a magnet and an electromagnetic winding set is provided. The lens set is movably disposed on the guide set, and the magnet is disposed on the lens set. The electromagnetic winding set is disposed at the side of the lens set and adjacent to the magnet. The electromagnetic winding set and the magnet are suitable for generating an electromagnetic force for controlling the movement of the magnet. By the movement of the magnet, the lens set is driven to move along the guide set.
Abstract:
A lamp module comprises a light source, a main reflector and an elliptical sub-reflector. The light source has a first arc and a second arc. The distance between the first arc and the second arc is an initial arc gap, and the light source is used for generating a light beam. The main reflector is used for reflecting the light beam and has a central axis, and the light source is disposed on the central axis. The elliptical sub-reflector is used for reflecting the light beam to the main reflector. The elliptical sub-reflector has a first focus and a second focus, a center of the light source is positioned on a long axis of the elliptical sub-reflector and between the first focus and the second focus, and a distance between the first focus and the second focus is larger than the initial arc gap.
Abstract:
An illuminating module includes two spaced-apart light sources, two hemispherical reflectors, two parabolic reflectors and two planar reflectors. Each of the light sources is disposed at a common focal point of one of the hemispherical reflectors and one of the parabolic reflectors. Each of the parabolic reflectors faces a respective one of the hemispherical reflectors in one direction, and confronts a respective one of the planar reflectors in the other direction such that light rays from each of the light sources which radiate toward the respective hemispherical reflector and the respective parabolic reflector are directed to the respective planar reflector so as to be subsequently reflected to travel in parallel lines parallel to an optical axis.
Abstract:
A projection display includes a transmissive first light valve and a reflective second light valve that are disposed adjacent to a polarization beam splitter prism and that are used to modulate first, second and third color components. The modulated first, second and third color components are then obtained from one side of the polarization beam splitter prism.
Abstract:
A twin-lens projection display includes a dichroic synthesizing prism and an optical path compensating prism. First and second light modulators, which are disposed adjacent to first and second input sides of the dichroic synthesizing prism, provide modulated first and second color components to the same. A third light modulator is disposed adjacent to an input side of the optical path compensating prism, and provides a modulated third color component thereto. A first projection lens receives the first and second color components from an output side of the dichroic synthesizing prism, whereas a second projector lens receives the third color component from an output side of the optical path compensating prism.
Abstract:
A projection display includes a light source for generating a beam output that contains first, second and third color components, a color separation/synthesizing prism unit having a color separation part for separating the beam output from the light source into the first, second and third color components that exit the prism unit in three different directions, and first, second and third light modulators for modulating the first, second and third color components that exit from the color separation part. The prism unit further has a color synthesizing part that receives the modulated first, second and third color components from the light modulators and that synthesizes the modulated first, second and third color components so as to form an output beam. A projection lens receives the output beam from the color synthesizing part, and is used to project a color image. The first, second and third color components have equal optical path lengths measured from the light source to the respective light modulator. The first, second and third color components further have equal optical path lengths measured from the respective light-modulator to the projection lens.
Abstract:
A projection screen that includes a transparent substrate, a plurality of micro-lens structures, a Fresnel lens structure, a light absorption layer, and a diffusive reflection layer is provided. The transparent substrate has a first surface and a second surface opposite to the first surface. The micro-lens structures are located at the first surface of the transparent substrate. The Fresnel lens structure is located at the second surface of the transparent substrate. The light absorption layer includes a light absorption portion. The diffusive reflection layer includes a plurality of dispersive diffusive reflection portions connected to the Fresnel lens structure. The deviation degrees of the diffusive reflection portions with respect to a plurality of optical axes of the corresponding micro-lens structures increase together with an increase in slopes of inclined surfaces of the Fresnel lens structure on the corresponding optical axes. A manufacturing method of the projection screen is also provided.
Abstract:
A display apparatus including a display unit, a first reflector, a second reflector, a third reflector and a lens unit is provided. The display unit emits an image beam. The first reflector is disposed on a transmission path of the image beam. The second reflector is disposed on the transmission path of the image beam from the first reflector. The third reflector is disposed on the transmission path of the image beam from the second reflector. The lens unit is disposed on the transmission path of the image beam from the third reflector. The image beam emitted from the display unit passes through a space defined between the second reflector and the third reflector and is transmitted to the first reflector. Afterward, the image beam is sequentially reflected by the first reflector, the second reflector and the third reflector, and then passes through the lens unit.