摘要:
A metal film 21 is laminated directly to or by means of an adhesive 13 to a transparent base sheet 11. A mesh metal film including lines defining apertures is formed by coating the metal film 21 with a mesh resist layer 109a patterned in a mesh, etching the metal film 21 through the mesh resist layer 109a, and removing the mesh resist layer 109a. The front surfaces and side surfaces of the lines of the mesh metal film are coated with a black coating layer 23.
摘要:
A metal film 21 is laminated directly to or by means of an adhesive 13 to a transparent base sheet 11. A mesh metal film including lines defining apertures is formed by coating the metal film 21 with a mesh resist layer 109a patterned in a mesh, etching the metal film 21 through the mesh resist layer 109a, and removing the mesh resist layer 109a. The front surfaces and side surfaces of the lines of the mesh metal film are coated with a black coating layer 23.
摘要:
The present invention is to provide an electromagnetic wave shielding material including a transparent substrate and a convex pattern layer composed of a conductive composition formed in a prescribed pattern on the transparent substrate, wherein the conductive composition contains conductive particles and a binder resin; and in observation of a transverse cross section of the convex pattern layer by electron microscopic photography, at least a part of the conductive particles has a fused continuation and a method for manufacturing the same. The electromagnetic wave shielding material and the method for manufacturing the same include a configuration capable of achieving a lower surface resistivity in an electromagnetic wave shielding material which is required to achieve a much more reduction in a line width of the pattern, specifically, a reduction to a line width of not more than 30 μm, and more preferably not more than 15 to 20 μm and a treatment method capable of reducing the surface resistivity by an easy and short-time treatment.
摘要:
The present invention is to provide an electromagnetic wave shielding material including a transparent substrate and a convex pattern layer composed of a conductive composition formed in a prescribed pattern on the transparent substrate, wherein the conductive composition contains conductive particles and a binder resin; and in observation of a transverse cross section of the convex pattern layer by electron microscopic photography, at least a part of the conductive particles has a fused continuation and a method for manufacturing the same. The electromagnetic wave shielding material and the method for manufacturing the same include a configuration capable of achieving a lower surface resistivity in an electromagnetic wave shielding material which is required to achieve a much more reduction in a line width of the pattern, specifically, a reduction to a line width of not more than 30 μm, and more preferably not more than 15 to 20 μm and a treatment method capable of reducing the surface resistivity by an easy and short-time treatment.