Abstract:
A remote node (RN) comprises a downstream port, a wavelength multiplexer (WM) coupled to the downstream port and comprising ports for passing optical waves, an optical rotator coupled to the WM, and a mirror coupled to the optical rotator, wherein the WM, the optical rotator, and the mirror are part of a wavelength tuning scheme. An apparatus comprises a tunable transmitter, a polarization beam splitter (PBS) coupled to the tunable transmitter, a filter coupled to the PBS, a receiver coupled to the filter, a photodiode (PD) coupled to the PBS, and a processor coupled to the tunable transmitter and the PD. An apparatus comprises a tunable transmitter configured to transmit a first optical wave, a filter configured to receive a first reflected optical wave associated with the first optical wave, and a processor configured to tune the tunable transmitter based on the first reflected optical wave.
Abstract:
An apparatus comprises a plurality of transmitters configured to transmit waves at a plurality of wavelengths, and a multiplexer coupled to the transmitters, comprising first ports and second ports, and configured to receive, via the first ports, a first subset of the waves meeting a first equation, receive, via the second ports, a second subset of the waves meeting a second equation, and multiplex the first subset of the waves and the second subset of the waves to create a combined wave. A method comprises receiving a first subset of waves at a first plurality of wavelengths and meeting a first equation, receiving a second subset of waves at a second plurality of wavelengths and meeting a second equation, multiplexing the first subset of waves and the second subset of waves in a non-interleaved manner to create a combined wave, and transmitting the combined wave.
Abstract:
A method for error detection within a passive optical network (PON), the method comprising receiving a first upstream optical signal that is copied at an optical splitter, converting the first upstream optical signal to a first electrical signal, receiving a second electrical signal that is converted from a second upstream optical signal that is copied at the optical splitter, and determining a corrected transmitted data stream using at least the first electrical signal and the second electrical signal, wherein the first upstream optical signal and the second upstream optical signal are copies of an upstream optical signal generated from a plurality of optical network units (ONUs).
Abstract:
An optical line terminal (OLT) in a time and wavelength division multiplexed (TWDM) passive optical network (PON). The OLT comprises a first optical port, a second optical port, and a processor. The first optical port is configured to couple to a plurality of optical network units (ONUs) via an optical distribution network (ODN). The second optical port is configured to couple to the ONUs via the ODN. The processor is coupled to the first optical port and the second optical port and is configured such that, responsive to receiving information indicating that the first optical port has experienced a greater power loss over time than the second optical port, the OLT assigns to the first optical port a first wavelength with a power greater than the power of a second wavelength assigned to the second optical port.
Abstract:
A remote node (RN) comprises a downstream port, a wavelength multiplexer (WM) coupled to the downstream port and comprising ports for passing optical waves, an optical rotator coupled to the WM, and a mirror coupled to the optical rotator, wherein the WM, the optical rotator, and the mirror are part of a wavelength tuning scheme. An apparatus comprises a tunable transmitter, a polarization beam splitter (PBS) coupled to the tunable transmitter, a filter coupled to the PBS, a receiver coupled to the filter, a photodiode (PD) coupled to the PBS, and a processor coupled to the tunable transmitter and the PD. An apparatus comprises a tunable transmitter configured to transmit a first optical wave, a filter configured to receive a first reflected optical wave associated with the first optical wave, and a processor configured to tune the tunable transmitter based on the first reflected optical wave.
Abstract:
A method for error detection within a passive optical network (PON), the method comprising receiving a first upstream optical signal that is copied at an optical splitter, converting the first upstream optical signal to a first electrical signal, receiving a second electrical signal that is converted from a second upstream optical signal that is copied at the optical splitter, and determining a corrected transmitted data stream using at least the first electrical signal and the second electrical signal, wherein the first upstream optical signal and the second upstream optical signal are copies of an upstream optical signal generated from a plurality of optical network units (ONUs).
Abstract:
An optical line terminal (OLT) in a time and wavelength division multiplexed (TWDM) passive optical network (PON). The OLT comprises a first optical port, a second optical port, and a processor. The first optical port is configured to couple to a plurality of optical network units (ONUs) via an optical distribution network (ODN). The second optical port is configured to couple to the ONUs via the ODN. The processor is coupled to the first optical port and the second optical port and is configured such that, responsive to receiving information indicating that the first optical port has experienced a greater power loss over time than the second optical port, the OLT assigns to the first optical port a first wavelength with a power greater than the power of a second wavelength assigned to the second optical port.
Abstract:
A remote node (RN) comprises a downstream port, a wavelength multiplexer (WM) coupled to the downstream port and comprising ports for passing optical waves, an optical rotator coupled to the WM, and a mirror coupled to the optical rotator, wherein the WM, the optical rotator, and the mirror are part of a wavelength tuning scheme. An apparatus comprises a tunable transmitter, a polarization beam splitter (PBS) coupled to the tunable transmitter, a filter coupled to the PBS, a receiver coupled to the filter, a photodiode (PD) coupled to the PBS, and a processor coupled to the tunable transmitter and the PD. An apparatus comprises a tunable transmitter configured to transmit a first optical wave, a filter configured to receive a first reflected optical wave associated with the first optical wave, and a processor configured to tune the tunable transmitter based on the first reflected optical wave.