Abstract:
A method implemented at a transmitter in a passive optical network (PON), the method comprising the transmitter fragmenting a data packet into multiple frames, with each frame of the multiple frames including a data packet preamble, with the data packet preamble including an indicator associated with at least one lane to be used to transmit the data packet and a logical link identifier (LLID), the indicator identifying a first lane selected from a plurality of lanes, identifying at least one frame transmitted over the first lane, and identifying the lane order of the plurality of lanes, and the transmitter transmitting the multiple frames over the plurality of lanes.
Abstract:
An apparatus comprises a DAC configured to convert a digital electrical signal to an analog electrical signal and a laser coupled to the DAC. The laser is configured to generate an optical signal using the analog electrical signal for modulation, the optical signal is a band-multiplexed optical signal comprising frequency bands, the frequency bands comprise a lowest-frequency band, and the lowest-frequency band comprises a baseband IM signal. The laser is configured to transmit the optical signal. A PON comprises an OLT configured to transmit a downstream optical signal, the downstream optical signal is a band-multiplexed optical signal comprising a first band and a second band. The PON includes a first ONU configured to receive the downstream optical signal and equalize only the first band; and a second ONU configured to receive the downstream optical signal and equalize the first band and the second band.
Abstract:
A method implemented at a transmitter in a passive optical network (PON), the method comprising the transmitter fragmenting a data packet into multiple frames, with each frame of the multiple frames including a data packet preamble, with the data packet preamble including an indicator associated with at least one lane to be used to transmit the data packet and a logical link identifier (LLID), the indicator identifying a first lane selected from a plurality of lanes, identifying at least one frame transmitted over the first lane, and identifying the lane order of the plurality of lanes, and the transmitter transmitting the multiple frames over the plurality of lanes.
Abstract:
Methods and apparatus are provided for identifying a connection between a reach extender channel termination (RE-CT) and an optical network unit (ONU). A method performed by an optical line terminal (OLT) for identifying a connection between a RE-CT and an ONU includes transmitting, by the OLT, a dynamic bandwidth allocation (DBA) grant to the ONU via a multi-channel termination reach extender (MCRE), retrieving, by the OLT from the MCRE, recorded optical signal power measurements associated with an upstream transmission by the ONU, and identifying, by the OLT, the RE-CT of the MCRE that is connected to the ONU by correlating the recorded optical signal power measurements associated with the upstream transmission by the ONU with the DBA grant.
Abstract:
An ONU comprises: a receiver configured to receive a discovery gate message from an OLT, the discovery gate message comprises a channel assignment field, and a discovery information field, the channel assignment field indicates transmission characteristics for a plurality of channels, and the discovery information field indicates a 25G upstream capability and a 25G discovery window; and a processor coupled to the receiver and configured to process the discovery gate message. A method implemented in an ONU, the method comprises: generating a register request message, the register request message comprises a destination address field, a source address field, a length/type field, an opcode field, and a discovery information field, and the discovery information field indicates a 25G upstream capability and a 25G registration attempt; and transmitting the register request message to an OLT.
Abstract:
An apparatus comprises: a first clock; a receiver configured to: receive a first packet via a first channel corresponding to a first wavelength, and receive a third packet via a third channel corresponding to a third wavelength; and a processor coupled to the receiver and configured to: implement channel bonding using the first channel and the third channel, synchronize the first clock based on the first packet, and calculate a channel skew between the first channel and the third channel based on the first clock.
Abstract:
A method of communication between a base band unit (BBU) and a plurality of remote radio units (RRUs) via a point-to-multipoint time division multiplexing passive optical network (TDM-PON) system is provided. The method can be performed by an ONU and comprises receiving Ethernet packets from the Ethernet interface of an RRU of the plurality of RRUs, performing time-division multiplexing of the Ethernet packets to generate multiplexed packets, storing in a buffer of the ONU the multiplexed packets based on a pre-determined buffer starting time and buffer size, packaging the multiplexed packets in the buffer to fixed length transmission blocks (TBs) having pre-allocated time slots for TDM-PON upstream transmission, and transmitting the TBs to an optical line terminal (OLT) that is communicatively coupled to the BBU such that no contention of TBs occurs at the OLT.
Abstract:
An apparatus comprises: a first clock; a receiver configured to: receive a first packet via a first channel corresponding to a first wavelength, and receive a third packet via a third channel corresponding to a third wavelength; and a processor coupled to the receiver and configured to: implement channel bonding using the first channel and the third channel, synchronize the first clock based on the first packet, and calculate a channel skew between the first channel and the third channel based on the first clock.
Abstract:
An apparatus comprising a digital signal processor (DSP) unit configured to perform fiber dispersion pre-compensation on a digital signal sequence based on a dispersion value to produce a pre-compensated signal, wherein the dispersion value is associated with a remote optical receiver, a plurality of digital-to-analog converters (DACs) coupled to the DSP unit and configured to convert the pre-compensated signal into analog electrical signals, and a frontend coupled to the DACs and configured to convert the analog electrical signals into a first optical signal, adding a constant optical electric (E)-field to the first optical signal to produce a second optical signal, and transmit the second optical signal to the remote optical receiver.
Abstract:
An optical line terminal (OLT) comprising a receiver configured to couple to a mode coupler via a multi-mode optical fiber that supports more than one optical communication mode, and couple to a plurality of optical network units (ONUs) via the mode coupler, a processor coupled to the receiver and configured to schedule upstream multi-mode transmissions from the ONUs via the multi-mode fiber and the mode coupler by employing time division multiplexing (TDM), and a transmitter coupled to the processor and configured to transmit schedule data to the ONUs.