摘要:
A method for making a lithium battery cathode composite is provided. First, a plurality of lithium vanadium phosphate particles is provided. A lithium iron phosphate layer is then formed on an outer surface of each of the lithium vanadium phosphate particle by coating a lithium iron phosphate precursor slurry, thereby forming the lithium battery cathode composite.
摘要:
A lithium battery cathode composite material includes a number of composite particles. Each of the composite particles includes one lithium vanadium phosphate particle and a lithium iron phosphate layer. The lithium iron phosphate layer is disposed on a surface of the lithium vanadium phosphate particle. The lithium iron phosphate layer includes a number of uniformly disposed lithium iron phosphate particles.
摘要:
A method for making a lithium battery cathode material is disclosed. A mixed solution including a solvent, an iron salt material, and a phosphate material is provided. An alkaline solution is added into the mixed solution until the mixed solution has a pH value ranging from about 1.5 to 5. The iron salt react with the phosphate material to form a plurality of iron phosphate precursor particles which are added in a mixture of a lithium source solution and a reducing agent to form a lithium iron phosphate precursor slurry. The lithium iron phosphate precursor slurry is heat-treated.
摘要:
A method for making a lithium battery cathode material is disclosed. A mixed solution including a solvent, an iron salt material, a vanadium source material and a phosphate material is provided. An alkaline solution is added in the mixed solution to make the mixed solution have a pH value ranging from about 1.5 to 5. The iron salt, the vanadium source material and the phosphate material react with each other to form a plurality particles of iron phosphate precursor doped with vanadium which are added in a mixture of a lithium source solution and a reducing agent to form a slurry of lithium iron phosphate precursor doped with vanadium. The slurry of lithium iron phosphate precursor doped with vanadium is heat-treated.
摘要:
A cathode composite material includes a cathode active material particle having a surface and a continuous aluminum phosphate layer. The continuous aluminum phosphate layer is coated on the surface of the cathode active material particle. The present disclosure also relates to a lithium ion battery including the cathode composite material.
摘要:
An anode composite material includes an anode active material particle having a surface and a continuous aluminum phosphate layer. The continuous aluminum phosphate layer is coated on the surface of the anode active material particle. The present disclosure also relates to a lithium ion battery that includes the cathode composite material.
摘要:
A solid electrolyte includes an interpenetrating polymer network and a lithium salt dispersed in the interpenetrating polymer network. The interpenetrating polymer network includes CH2—CH2OH segments, and is formed by polymerizing a first monomer R1—OCH2—CH2—OHR2, a second monomer R3—OCH2—CH2—OmR4 and an initiator. Each “R1”, “R2” and “R3” includes —C═C— group or —C≡C— group. The “R4” includes an alkyl group or a hydrogen atom. The “m” and “n” are integer. Molecular weights of the first monomer and the second monomer are more than or equal to 100, and less than or equal to 800. The first monomer is less than or equal to 50% of the second monomer by weight. The lithium salt is less than or equal to 10% the second monomer by weight. A lithium based battery using the solid electrolyte is also provided.
摘要:
A solid electrolyte includes an interpenetrating polymer network, a plasticizer and a lithium salt. The plasticizer and the lithium salt are dispersed in the interpenetrating polymer network. The interpenetrating polymer network includes CH2—CH2—On segments, and is formed by polymerizing a first monomer R1—OCH2—CH2—OnR2 with a second monomer R3—OCH2—CH2—OmR4 under an initiator. The “R1”, “R2” or “R3” respectively includes —C═C— group or —C≡C— group. The “R4” includes an alkyl group or a hydrogen atom. The “m” and “n” are integers. A molecular weight of the first monomer or a molecular weight of the second monomer is greater than or equal to 100, and less than or equal to 800. The first monomer is less than or equal to 50% of the second monomer by weight. The lithium salt is less than or equal to 10% the second monomer by weight. A lithium based battery using the solid electrolyte is also provided.
摘要:
A lithium titanate composite material includes lithium titanate particles and an AlPO4/C composite layer disposed on a surface of the lithium titanate particles. The AlPO4/C composite layer includes aluminum phosphate and carbon. The lithium titanate composite material, as an anode active material, can be applied to a lithium ion battery to increase its electrochemical stability.
摘要:
A cathode composite material includes a cathode active material particle having a surface and a continuous aluminum phosphate layer coated on the surface of the cathode active material particle. A material of the cathode active material particle is layered type lithium nickel cobalt manganese oxide. The present disclosure also relates to a lithium ion battery and a method for making the cathode composite material.