Abstract:
An apparatus and process to maintain control of the temperature of low-melting compounds, high melt flow polymers, and thermally sensitive materials for the pelletization of such materials. The addition of a cooling extruder, and a second melt cooler if desired, in advance of the die plate provides for regulation of the thermal, shear, and rheological characteristics of narrow melting-range materials and polymeric mixtures, formulations, dispersions or solutions. The apparatus and process can then be highly regulated to produce consistent, uniform pellets of low moisture content for these otherwise difficult materials to pelletize.
Abstract:
An apparatus and process to maintain control of the temperature of low-melting compounds, high melt flow polymers, and thermally sensitive materials for the pelletization of such materials. The addition of a cooling extruder, and a second melt cooler if desired, in advance of the die plate provides for regulation of the thermal, shear, and rheological characteristics of narrow melting-range materials and polymeric mixtures, formulations, dispersions or solutions. The apparatus and process can then be highly regulated to produce consistent, uniform pellets of low moisture content for these otherwise difficult materials to pelletize.
Abstract:
A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets with out subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases th speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
Abstract:
A method and apparatus for underwater pelletizing and subsequent drying of crystallizing polymers to crystallize the polymer pellets with out subsequent heating is shown in FIG. 5. High velocity air or other inert gas is injected into the water and pellet slurry line (120) toward the dryer near the pelletizer exit (102) at a flow rate from about 100 to about 175 m3/hour, or more. Such high-speed air movement forms a vapor mist with the water and significantly increases th speed of the pellets into and out of the dryer such that the polymer pellets leave the dryer with sufficient latent heat to cause self-crystallization within the pellets. A valve mechanism in the slurry line (150) after the gas injection further regulates the pellet residence time and a vibrating conveyor after the dryer helps the pellets to achieve the desired level of crystallinity and to avoid agglomeration.
Abstract:
An apparatus and process to maintain control of the temperature of low-melting compounds, high melt flow polymers, and thermally sensitive materials for the pelletization of such materials. The addition of a cooling extruder, and a second melt cooler if desired, in advance of the die plate provides for regulation of the thermal, shear, and rheological characteristics of narrow melting-range materials and polymeric mixtures, formulations, dispersions or solutions. The apparatus and process can then be highly regulated to produce consistent, uniform pellets of low moisture content for these otherwise difficult materials to pelletize.