Abstract:
The present disclosure is directed to turbine engines and systems for active stability control of rotating compression systems utilizing an electric machine operatively coupled thereto. In one exemplary aspect, an electric machine operatively coupled with a compression system, e.g., via a shaft system, is controlled to provide shaft damping for instability fluctuations of the pressurized fluid stream within the compression system. Based on control data indicative of a system state of the compression system, a control parameter of the electric machine is adjusted to control or change an output of the shaft system. Adjusting the shaft system output by adjusting one or more control parameters of the electric machine allows the compression system to dampen instability fluctuations of the fluid stream within the compression system. A method for active stability control of a compression system operatively coupled with an electric machine via a shaft system is also provided.
Abstract:
A method for operating a gas turbine engine having a starter-electric generator driven by one of a plurality of shafts of the gas turbine engine is provided. The method includes determining a desired amount of thrust to be produced by the gas turbine engine, as well as a desired amount of electrical power to be generated by the starter-electric generator of the gas turbine engine. The method operates the gas turbine engine to produce the desired amount of thrust, while producing less than the desired amount of electrical power using the starter-electric generator. Producing less than the desired amount of electrical power using the starter-electric generator allows for the desired amount of thrust production, or allows for the desired amount of thrust production more quickly.
Abstract:
The present disclosure is directed to turbine engines and systems for active stability control of rotating compression systems utilizing an electric machine operatively coupled thereto. In one exemplary aspect, an electric machine operatively coupled with a compression system, e.g., via a shaft system, is controlled to provide shaft damping for instability fluctuations of the pressurized fluid stream within the compression system. Based on control data indicative of a system state of the compression system, a control parameter of the electric machine is adjusted to control or change an output of the shaft system. Adjusting the shaft system output by adjusting one or more control parameters of the electric machine allows the compression system to dampen instability fluctuations of the fluid stream within the compression system. A method for active stability control of a compression system operatively coupled with an electric machine via a shaft system is also provided.
Abstract:
The present disclosure is directed to turbine engines and systems for active stability control of rotating compression systems utilizing an electric machine operatively coupled thereto. In one exemplary aspect, an electric machine operatively coupled with a compression system, e.g., via a shaft system, is controlled to provide shaft damping for instability fluctuations of the pressurized fluid stream within the compression system. Based on control data indicative of a system state of the compression system, a control parameter of the electric machine is adjusted to control or change an output of the shaft system. Adjusting the shaft system output by adjusting one or more control parameters of the electric machine allows the compression system to dampen instability fluctuations of the fluid stream within the compression system. A method for active stability control of a compression system operatively coupled with an electric machine via a shaft system is also provided.
Abstract:
A method for operating a gas turbine engine having a starter-electric generator driven by one of a plurality of shafts of the gas turbine engine is provided. The method includes determining a desired amount of thrust to be produced by the gas turbine engine, as well as a desired amount of electrical power to be drawn from the starter-electric generator of the gas turbine engine. The method operates the gas turbine engine to produce the desired amount of thrust, while drawing less than the desired amount of electrical power from the starter-electric generator. Drawing less than the desired amount of electrical power from the starter-electric generator allows for the desired amount of thrust production, allows for the desired amount of thrust production more quickly, or allows for maintenance of a stall margin for any purpose (such as to increase an efficiency of the engine or to allow for certain engine designs).
Abstract:
A switched capacitive device includes a stator including a plurality of first electrodes extending substantially in a longitudinal dimension. The switched capacitive device also includes an armature including a plurality of second electrodes proximate the plurality of first electrodes. The plurality of second electrodes is translatable with respect to the plurality of first electrodes. The plurality of second electrodes extends substantially in the longitudinal dimension. The plurality of first electrodes and the plurality of second electrodes are configured to induce substantially linear motion of the second plurality of electrodes in the longitudinal dimension with respect to the first plurality of electrodes as a function of an electric field induced by at least a portion of the first plurality of electrodes.
Abstract:
The present disclosure is directed to turbine engines and systems for active stability control of rotating compression systems utilizing an electric machine operatively coupled thereto. In one exemplary aspect, an electric machine operatively coupled with a compression system, e.g., via a shaft system, is controlled to provide shaft damping for instability fluctuations of the pressurized fluid stream within the compression system. Based on control data indicative of a system state of the compression system, a control parameter of the electric machine is adjusted to control or change an output of the shaft system. Adjusting the shaft system output by adjusting one or more control parameters of the electric machine allows the compression system to dampen instability fluctuations of the fluid stream within the compression system. A method for active stability control of a compression system operatively coupled with an electric machine via a shaft system is also provided.
Abstract:
An electric machine includes a stator assembly including a first stator segment and a second stator segment, the first and second stator segments each including a plurality of laminations extending generally along a circumferential direction, each pair of adjacent laminations of the first and second stator segments defining a gap therebetween. The first and second stator segments are assembled together such that the laminations of the first stator segment are arranged at least partially in the gaps between the laminations of the second stator segment.
Abstract:
An electric machine includes a stator assembly including a first stator segment and a second stator segment, the first and second stator segments each including a plurality of laminations extending generally along a circumferential direction, each pair of adjacent laminations of the first and second stator segments defining a gap therebetween. The first and second stator segments are assembled together such that the laminations of the first stator segment are arranged at least partially in the gaps between the laminations of the second stator segment.